
CS 88 Computational Structures in Data Science
Spring 2019 Midterm

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” × 11” cheat sheet
of your own creation and the official CS 88 midterm reference sheet (attached to the back of the exam).

• Mark your answers on the exam itself. We will not grade answers written on scratch paper. Check that you
have 5 double-sided pages (including cover) for 6 problems. Put your name and SID on every page.

Last name

First name

Student ID number

Berkeley email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• You may use built-in Python functions that do not require import, such as min, max, pow, and abs. You may
not use functions defined on your study guide unless clearly specified in the question.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.
Your solution must fit within the number of lines provided, but may not require all of the lines.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu

[This page is purposely left blank. Use it as scratch space.]

Name and SID: __ 1

1. Evaluators Gonna Evaluate

For each of the expressions in the table below, write the output displayed by the interactive
Python interpreter when the expression is evaluated. The output may have multiple lines. ​If an
error occurs, write “Error”.​ Your answers must fit within the boxes provided. Work outside
the boxes will not be graded.

Hint: No answer requires more than 4 lines. (It’s possible that all of them require even fewer.)
The first two rows have been provided as examples. Recall: The interactive interpreter displays
the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the following statements:

x = 3
y = 2
z = 1
a = ‘cs88’
def fun_hof(f, lst):

return [f(x, x) for x in lst if f(x, x)]
def combine(a, b):

return a+b if a+b else ‘combined’
def mooz(m, n):

if m * n > 9:
return m

else:
return None

Expression Interactive Output

x * y 6

def free(s):
 print(s)
 return ‘free ’ + s
free(‘points’)

points
‘free points’

z / y

a / y

z if z // y else x

a * 2

Name and SID: __ 2

a or x

print(mooz(2, 3))

mooz(3, 2)
mooz(4, 3)

mooz(7, 7)
mooz(3, 3) + mooz(4, 4)

mooz(5, 5) or mooz(4, 4)

fun_hof(combine, a)

fun_hof(combine, [0, 1, 2, 3])

fun_hof(mooz, [-2, -1, 0]) and x == 3

grades(100)
def grades(score):
 if score >= 90:
 return ‘Awesome!’
 elif score < 70:
 return ‘Come to OH!’

def get_element(k):
 def f(lst):
 if k < len(lst):
 return lst[k]
 print(‘Found it!’)
 print(‘Let me see...’)
 return f
get_5 = get_element(5)
get_5([1, 2, 3, 4, 5])
get_5(range(1, 10))

Name and SID: __ 3

2. Spill the Tea

Name and SID: __ 4

3. Fibonacci Sequence

You define a function that calculates the nth item of the Fibonacci sequence to be this:

def fib(n):
 if n <= 2:
 return 1
 else:
 return fib(n-1) + fib(n-2)

You call the ​fib​ function with the input 6, i.e.​ ​fib(6)​. How many calls to ​fib​ will the function
make? Include the original call to ​fib​ in your solution, i.e. ​fib(1)​ produces 1 call to ​fib​. Put
your answer in the box provided. Work outside the box will not be graded.

Solution:

Name and SID: __ 5

4. Harshad Number

In math, a Harshad (or Niven) number is defined as a number that is divisible by the sum of its
digits. For example, the number 18 is a Harshad number, because the sum of the digits 1 and 8 is
9, and 18 is divisible by 9. The number, 15, is not a Harshad number because the sum of the
digits 1 and 5 is 6, and 15 is not divisible by 6.

Given a positive integer input, write an iterative program that returns True if the input is a
Harshad number, and False otherwise.

Note: your solution must fit within the lines provided.

def is_harshad(n):
 """Returns True if n is a Harshad number. False otherwise.

 >>> is_harshad(18) # 18 is divisible by (1+8)
 True
 >>> is_harshad(15) # 15 is NOT divisible by (1+5)
 False
 >>> is_harshad(111) # 111 is divisible by (1+1+1)
 True
 """

 sum_digits = __

 temp = __

 __:

 sum_digits = __

 temp = __

 return __

Name and SID: __ 6

5. NBA Players

Andrew is a big basketball fan and wants to know the average height of every team in the NBA.
He is given a list of NBA players represented as tuples: (Name, Height, Team). Before writing a
function to find the average height of each team, he first defines some helper functions.

For each of these problems, assume that the following list has already been initialized:
nba = [
 ("Lebron James", 80, "Los Angeles Lakers"),
 ("Stephen Curry", 75, "Golden State Warriors"),
 ("Klay Thompson", 79, "Golden State Warriors"),
 ("Michael Jordan", 78, "Chicago Bulls"),
 ("Kobe Bryant", 78, "Los Angeles Lakers"),
 ("Shaquille O'Neal", 85, "Los Angeles Lakers")]

You may further assume the following functions:

● sum(s): returns the sum of a sequence s
● map(f, s): maps function f over sequence s
● filter(f, s): filters sequence s by function f

a. team_filter takes in a team and returns a function that checks if a player is on that team.

def team_filter(team):
 """Generates a function that takes in a player and checks if the
 player is on the team

 >>> is_warrior = team_filter("Golden State Warriors")
 >>> is_warrior(nba[0])
 False # Lebron James is not on the Golden State Warriors
 >>> is_warrior(nba[1])
 True # Stephen Curry is on the Golden State Warriors
 >>> is_warrior(("Andrew Tan", 76, "Golden State Warriors"))
 True # Andrew Tan wishes he was on the Golden State Warriors
 """

 ​__

 ​__

 ​__

 ​__

 ​__

 ​__

Name and SID: __ 7

b. teammates takes in a list of players and team, and returns a list of players on that team.

def teammates(players, team):
 """Return a list of players who are on the specified team
 >>> teammates(nba, "Golden State Warriors")
 [("Stephen Curry", 75, "Golden State Warriors"), ("Klay Thompson",
 79, "Golden State Warriors")]
 >>> teammates(nba, "Chicago Bulls")
 [("Michael Jordan", 78, "Chicago Bulls")]
 """

 return ​___

c. get_player_height takes in a player and returns the height of that player in inches.

def get_player_height(player):
 """Return the height of the given player. Assume player is
 represented as a tuple (name, height, team).
 >>> get_player_height(nba[0])
 80 # Lebron James is 80 inches tall
 >>> get_player_height(nba[1])
 75 # Stephen Curry is 75 inches tall
 >>> get_player_height(("Andrew Tan", 76, "Golden State Warriors"))
 76 # Andrew Tan wishes he was 76 inches tall
 """

 return ​___

d. team_average: You may use the functions from parts a-c and assume they work as described.

def team_average(players, team):
 """Takes in a list of players (Name, Height, Team) and team, and returns
 the average height of the players on that team
 >>> team_average(nba, "Los Angeles Lakers")
 81 # (80 + 78 + 85) / 3
 >>> team_average(nba, "Golden State Warriors")
 77 # (75 + 79) / 2
 """

 ​___

 ​___

 ​___

 ​___

Name and SID: __ 8

6. Subtraction Game

In game theory, a subtraction game is a simple game with two players, player 0 and player 1. At
the beginning, there is a pile of n cookies. The players alternate turns; each turn, a player can
take anywhere from 1 to 3 cookies. The player who takes the last cookie wins. Fill in the
function can_win, which returns True if it is guaranteed to win starting at the given number of
cookies for the current player. Assume the players play with perfect logic (i.e. always make the
optimal move). It uses the following ideas:

● If the number of cookies is nonpositive, it is impossible to win, so return False.
● Otherwise, the current player can choose to take 1, 2, or 3 cookies. Evaluate each action:

○ If that action forces the opponent to lose, then return True (since we can win).
○ If none of the actions can guarantee a win, then return False.

def can_win(number):
 """Returns True if the current player is guaranteed a win
 starting from the given state. It is impossible to win a game
 from an invalid game state.

 >>> can_win(-1) # invalid game state
 False
 >>> can_win(3) # take all three!
 True
 >>> can_win(4) # you take 1-3 cookies, opponent takes remaining
 False
 """

 ​__

 ​__

 ​__

 ​__

 ​__

 ​__

 ​__

 ​__

 ​__

