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1 TRUE/FALSE [3 POINTS EACH, 48 TOTAL]

1 True/False [3 Points Each, 48 Total]
1 point for True/False marking, 2 points for justification.

For each statement, mark whether it is true or false and give a brief justification (maximum 1 sentence, must
fit in box) in the adjacent box.

(a) ¬(P∨Q∨R)≡ ¬P∧¬Q∧¬R

True

False

Answer: True. This is just two applications of De Morgan’s Laws.

(b) [(∀x ∈ R,∃y ∈ R)P(x,y)] =⇒ [(∃x ∈ R,∃y ∈ R)¬P(x,y)]

True

False

Answer: False. If P(x,y) is always true, the left hand side will be true but the right will be false.

(c) [∃x ∈ (R\Q)](x ∈ Z)

True

False

Answer: False. This means there is some irrational number that is an integer.

(d) [(∃x ∈Q,∀y ∈ Z)(P(x,y)∧Q(x,y))] =⇒ [(∀y ∈ Z,∃x ∈Q)P(x,y)]

True

False

Answer: True. For any y ∈ Z, take the x that is guaranteed by the “if” part.

(e) Every graph requires at least ∆ colors to be properly vertex-colored, where ∆ is the maximum degree
on the graph.

True

False

Answer: False. For example, K3,3 has ∆ = 3 but can be colored with two colors.
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1 TRUE/FALSE [3 POINTS EACH, 48 TOTAL]

(f) Let G be an acyclic graph on 9 vertices. If G has 3 connected components, G has fewer than 7 edges.

True

False

Answer: True. Each connected component is a tree, and so has one fewer edge than vertices, meaning
the total number of edges is 9−3 = 6 < 7.

(g) Every tree on at least two vertices has two vertices with the same degree.

True

False

Answer: True. Every tree has at least two leaves, which both have degree 1.

(h) f (x) = ax (mod p) is a bijection for all values of a and all primes p.

True

False

Answer: False. If a = 0, f (x) is not a bijective function as every input maps to 0.

Alternative Justification: f is only a bijection when gcd(a, p) = 1.

(i) Let p and q be distinct primes and gcd(a,(p−1)(q−1)) = 1. Then f (x) = xa (mod pq) is a bijection.

True

False

Answer: True. If d = a−1 (mod (p−1)(q−1)), f has an inverse f−1(y) = xd (mod pq).

(j) In an RSA scheme with decryption key d and primes p and q, gcd(d,(p−1)(q−1)) must equal 1.

True

False

Answer: True. Since d = e−1 mod (p−1)(q−1), then e = d−1 mod (p−1)(q−1). For the inverse
to exist, d must be coprime to (p−1)(q−1)

(k) (N,e) = (143,9) is a valid RSA public key. (Note: 143 = 11 ·13)

True

False
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1 TRUE/FALSE [3 POINTS EACH, 48 TOTAL]

Answer: False. e = 9 is not coprime with (p−1)(q−1) = 120.

(l) Every element in {0,1, . . . ,32} has a multiplicative inverse (mod 33).

True

False

Answer: False. For instance, 3 does not have an inverse.

(m) If two degree 5 polynomials overlap on 5 points, then there always exists a 6th point of overlap.

True

False

Answer: False. You need 6 points to fully determine a degree 5 polynomial.

Alternative justification: P(x) = x(x−1)(x−2)(x−3)(x−4)(x−5) and −P(x) agree on their 5 roots
but nowhere else.

(n) A degree d polynomial with real coefficients always has exactly d real roots.

True

False

Answer: False. Such a polynomial will have at most d roots, but may have fewer.

Alternative Justification: x2 +1 is degree 2, but has no roots.

(o) There exists a degree exactly 2 polynomial through the points (0,2), (1,3), and (2,4).

True

False

Answer: False. These points uniquely define the degree at most 2 polynomial x+2.

(p) Let A, B, C be three finite sets. If there is an injection from A to B, and an injection from B to C, then
there is an injection from A to C.

True

False

Answer: True. We can build an injection from A to C by composing the one from A to B with the one
from B to C.
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2 SHORT ANSWER AND MULTIPLE CHOICE [3 POINTS EACH, 66 TOTAL]

2 Short Answer and Multiple Choice [3 Points Each, 66 Total]
(a) Let S be the set of all streets in Berkeley, and T be the set of days in a week. Define the following

statements:

B(x) = “There is a boba shop on street x.”
C(x) = “Street x borders Berkeley’s campus.
D(x, t) = “On day t, there is a traffic delay on street x.
E(x, t) = “On day t, employees who work on street x will run late.
F(x,y) = “Street x and street y are at most five blocks apart.”

Write each statement below in terms of propositional logic.

(i) There are no boba shops on the border of Berkeley’s campus.

Answer: (∀x ∈ S)[C(x) =⇒ (¬B(x)] or (∀x ∈ S)[(¬C(x))∨ (¬B(x)]
(ii) On any given day and Berkeley street, if there is a traffic delay, then all employees who work

there will run late.

Answer: (∀x ∈ S)(∀t ∈ T )(D(x, t) =⇒ E(x, t)
(iii) There is at least one day each week where two boba shops at most five blocks apart are on streets

that experience employee lateness.

Answer: (∃t ∈ T )(∃x,y ∈ S)(B(x)∧B(y)∧F(x,y)∧E(x, t)∧E(y, t))
(iv) All boba shops in Berkeley are more than five blocks away from each other.

Answer: (∀x,y∈ S)[(B(x)∧B(y)) =⇒ (¬F(x,y)∨(x = y))]. Note: we did not require the x = y
condition to receive full credit. There are also several ways to re-write this statement, using De
Morgan’s Laws; any equivalent statement also received full credit.z

(b) A planar graph has 100 vertices and 42 faces. How many edges does it have?

Answer: 140. From Euler’s formula, we know that v+ f = e+ 2. Plugging in our values here, we
have v+ f = 142, so e = 142−2 = 140.
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2 SHORT ANSWER AND MULTIPLE CHOICE [3 POINTS EACH, 66 TOTAL]

(c) How many edges does a planar graph have if each face has exactly 4 sides? Write your answer in
terms of v, the number of vertices.

Answer: 2v−4. We know that each face has exactly 4 sides, so the number of sides is four times the
number of faces. We also know that each edge contributes two sides, so the number of edges is twice
the number of sides. Hence, we have that 4 f = 2e, so f = e

2 . Plugging this into Euler’s formula, we
get v+ e

2 = e+2. Rearranging this, we have e
2 = v−2, so e = 2v−4.

(d) We abbreviate the following graph attributes:

(A) The graph has an Eulerian tour.
(B) The graph is 2-colorable.
(C) The graph is planar.

For each graph described below, fill in all attributes that always apply. No justification required.
Recall that Kn is the complete graph on n vertices, and Km,n is the complete bipartite graph with m
vertices on the left and n vertices on the right. (One point for each circle correctly marked/unmarked.)

(i) K1,n for n≥ 1, n odd.

(A) (B) (C)

Answer: (B), (C) hold. (A) n of the vertices will have degree 1, which is odd. (B) This graph is
bipartite. (C) This graph always has a planar drawing (a star).

(ii) Kn,n for n≥ 2, n even.

(A) (B) (C)

Answer: (A), (B) hold. (A) Each vertex has degree n, which is even. (B) This graph is bipartite.
(C) For n≥ 4 this graph is not planar because K3,3 is a subgraph.

(iii) K5 with any single edge removed.
(A) (B) (C)

Answer: (C) holds. (A) There are two vertices of degree 3. (B) K4 is a subgraph, which requires
4 colors already. (C) It cannot contain either K5 (not enough edges) or K3,3 (not enough vertices).

(iv) Two copies of K2019, with a single edge connecting the copies.
(A) (B) (C)

Answer: None of the above. (A) The two vertices incident to the connecting edge each have
degree 2019. (B) We need ≥ 2019 colors for each copy alone. (C) This graph contains K5 as a
subgraph.

(e) Find 850 (mod 65).
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2 SHORT ANSWER AND MULTIPLE CHOICE [3 POINTS EACH, 66 TOTAL]

Answer: 64. 65 = 5 · 13, so similar to the proof of correctness in RSA, we have that x4·12+1 ≡ x
(mod 65) for any x. Thus, 849 ≡ 8 (mod 65), so 850 ≡ 849 ·8≡ 64 (mod 65).

An alternative way to do this problem is to note that 82 = 64 ≡ −1 (mod 65). Thus, we have that
850 = 6425 ≡ (−1)25 ≡−1≡ 64 (mod 65).

(f) Find the smallest positive integer x satisfying x≡ 2 (mod 3), x≡ 3 (mod 4), and x≡ 4 (mod 5).

Answer: 59. One way to shortcut this problem is to notice that x ≡ −1 (mod 3), x ≡ −1 (mod 4),
and x≡−1 (mod 5). Thus, the solution that the Chinese Remainder Theorem gives must be equiva-
lent to −1 mod 3 ·4 ·5 = 60. The smallest positive integer satisfying this is 59.

Alternatively, one can also run the algorithm given by the Chinese Remainder Theorem. For this,
we’ll have that 4 ·5≡ 2 (mod 3), so b3 = 20 · (2−1 mod 3) = 40. We then have 3 ·5≡ 3 (mod 4), so
b4 = 15 · (3−1 mod 4) = 45. Finally, we have 3 ·4≡ 2 (mod 5), so b5 = 12 · (2−1 mod 5) = 36. Thus,
we have that we can set x = (2 ·40)+(3 ·45)+(4 ·36) = 80+135+144 = 359. Taking this modulo
60, we again get 59.

(g) Let Z24 be the set of integers modulo 24. We say an element x ∈ Z24 is nilpotent if, for some n ∈ N,
xn ≡ 0 (mod 24). List all nilpotent elements in Z24.

Answer: {0,6,12,18}. In order for xn to be equivalent to 0 mod 24, it must be divisible by 24. Hence,
it must contain all of the prime factors of 24. Raising a number to a power cannot add additional prime
factors, so x can only be nilpotent mod 24 if it has both 2 and 3 as factors to begin with. Furthermore,
if we have an x with both these factors, raising it to a high enough power will ensure that it has at
least 3 factors of 2 and one factor of 3, and hence will be divisible by 24. Thus, the set of nilpotent
elements mod 24 is just the set of elements divisible by 6.

(h) Alice sets up an RSA scheme with p = 5, q = 11. If e = 3, compute d.

Answer: We need d ≡ e−1 (mod (5−1)(11−1) = 40). We note that 3 ·27 = 81≡ 1 (mod 40), so
we would take d = 27.

(i) Suppose we have the following equivalences.

4x≡ 1 (mod 13)

3y≡ 4 (mod 13)
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2 SHORT ANSWER AND MULTIPLE CHOICE [3 POINTS EACH, 66 TOTAL]

Determine x+ y (mod 13).

Answer: 7. 10 is 4’s inverse mod 13, while 9 is 3’s inverse. Hence, the first congruence says
that x ≡ 1 · 10 ≡ 10 (mod 13), while the second says that x ≡ 4 · 9 ≡ 36 ≡ 10 (mod 13). Hence,
x+ y≡ 20≡ 7 (mod 13).

Alternatively, one could multiply the first congruence by 3 and the second by 4. Noting that 12≡−1
(mod 13), this will give us that −x ≡ 3 (mod 13) and −y ≡ 16 ≡ 3 (mod 13). Hence, x + y ≡
−3−3≡ 7 (mod 13).

(j) James’ Day 1 as a CS 70 GSI was a Tuesday. He has been a CS 70 GSI for 1200 continuous days!
(What an achievement!) On which day of the week was his Day 1200?

Answer: Thursday. 1200 ≡ 3 (mod 7). If Tuesday corresponds to 1 (mod 7), then 3 (mod 7) day
would fall on a Thursday.

(k) Consider two distinct polynomials in GF(p): P(x) of degree d and Q(x) of degree k. Assume d,k < p.
What is the maximum number of times P(x) can intersect Q(x)?

Answer: This is asking the number of solutions to the equation P(x) = Q(x) which is the same as ask-
ing the number of roots of the polynomial P(x)−Q(x) which is max(d,k). Because the polynomials
are distinct, the difference is never the 0 polynomial so we do not need to consider that case.

(l) Consider two distinct polynomials P(x) and Q(x) in GF(p), both degree d, with 10 < d < p. Suppose
P(i) = Q(i) for i = 0,1, ...9. What is the maximum number of times P(i) = Q(i) for i = 10, ..., p−1?

Answer: d−10. Suppose they intersect at d−9 points, then they would agree on (d−9)+10 = d+1
points and therefore be the same polynomial.

(m) Alice uses two RSA schemes, with public keys (N,e1) and (N,e2), to send the same message m to
Bob and Carol. You may assume 0≤m < N. Eve the eavesdropper is able to see both of the encrypted
messages that Alice sends.
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2 SHORT ANSWER AND MULTIPLE CHOICE [3 POINTS EACH, 66 TOTAL]

(i) If e1 = 11 and e2 = 37, find a,b ∈ Z such that ae1 +be2 = 1.

Answer: a =−10 and b = 3. To compute a and b, we apply the Extended Euclidean algorithm.

(ii) Let M1 be the encrypted message sent to Bob, and M2 be the encrypted message sent to Carol.
You may assume M1, M2 are coprime to N. Write an expression for m in terms of M1, M2, a, b,
and N, where a and b are the answers to Part (i).

Answer: Ma
1 ·Mb

2 (mod N). This is equivalent to me1a+e2b (mod N). From the previous part,
we know ae1 +be2 = 1, which gives us m.

(n) Suppose we wish to interpolate a degree at most two polynomial through the points (0,3), (1,2), and
(2,5) modulo 7, using Lagrange interpolation.

(i) Determine ∆0(x) in simplified form, i.e. in the form ax2 +bx+ c.

Answer: To calculate ∆0(x), we take (x−1)(x−2)
(0−1)(0−2) ≡ 4(x2−3x+2)≡ 4x2−12x+8≡ 4x2+2x+1

(mod 7)

(ii) Express the final interpolated polynomial p(x) in terms of ∆0(x),∆1(x), and ∆2(x).

Answer: p(x)≡ 3∆0(x)+2∆1(x)+5∆2(x) (mod 7). Full credit was also given if you solved for
the polynomial which is p(x) = 2x2 +4x+3
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3 SHORT PROOF POTPOURRI [5 POINTS EACH, 10 TOTAL]

3 Short Proof Potpourri [5 Points Each, 10 Total]

(a) Prove that
√

10 is irrational.

Answer: Assume for contradiction that
√

10 is rational, so we can write an equation
√

10 = a
b , where

a,b ∈ Z. We may assume that gcd(a,b) = 1, otherwise we can cancel out common factors until
they are coprime. If we square both sides of our equation, we have a2

b2 = 10; rearranged it becomes
a2 = 10b2. We know the right hand side must be divisible by 2, so a must also be divisible by 2. Thus,
the left hand side is actually divisible by 4. We only get one factor of 2 from 10, so b must also be
divisible by 2. However, this contradicts the assumption that gcd(a,b) = 1.

(b) At Cheeseboard, there are 12 employees who each work 2 hour-long shifts every day. Each shift starts
on the hour. Cheeseboard is open 10 hours each day, from 10 AM to 8 PM. Prove that there is an hour
during the day when at least 3 employees are on shift.

Answer: Since there are 12 workers each with a 2-hour shift, we have 24 distinct (people, hour) pairs.
We now apply the pigeonhole principle, with the hours as the holes and the (people, hour) pairs as
the pigeons. Since there are 10 hours to the day, there is at least one hour of the day with > 24

10 > 2
(people, hour) pairs assigned to it, which gives the desired result.
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4 DROP THE BASE (CASE) [5/5/3/7 POINTS, 20 TOTAL]

4 Drop the Base (Case) [5/5/3/7 Points, 20 Total]
(a) Consider the sequence defined by

a0 = 2

an = 3an−1 +2

(i) Using induction, prove that an = 3n+1−1.

Answer: The given information a0 = 2 confirms the base case n = 0. Now, assume for all n≤ k
that an = 3n+1−1. Now, let n = k+1. Using the recursion definition and inductive hypothesis:

ak+1 = 3ak +2 = 3(3k+1−1)+2 = 3k+2−3+2 = 3k+2−1

This verifies the statement for n = k+1.

(ii) Prove that
n

∑
i=0

ai <
3
2
·3n+1

You may use the result from Part (i), even if you did not do Part (i).

Answer: For the base case n = 0, we check that 2 < 3
2 · 3 = 9

2 . Now, assume for all n ≤ k that
the inequality holds. For n = k+1, we have:

k+1

∑
i=0

ai =

(
k

∑
i=0

ai

)
+ak+1 <

3
2
·3k+1 +3k+2 =

1
2
·3k+2 +3k+2 =

3
2
·3k+2

This verifies the inequality for n = k+1.

(b) We wish to prove the following general form of one of De Morgan’s Laws:

¬(A1∧A2∧ . . .∧An) = (¬A1)∨ (¬A2)∨ . . .∨ (¬An)

(i) Fill in the truth table to prove that ¬(A1∧A2)≡ (¬A1)∨ (¬A2).

A1 A2 A1∧A2 ¬(A1∧A2) ¬A1 ¬A2 ¬A1∨¬A2
T T
T F
F T
F F

Answer:
A1 A2 A1∧A2 ¬(A1∧A2) ¬A1 ¬A2 ¬A1∨¬A2

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

11



4 DROP THE BASE (CASE) [5/5/3/7 POINTS, 20 TOTAL]

(ii) Use induction to prove the desired statement.

Answer: We induct on n. The base case, n = 2 was proven in Part (i).
Now, assume the equivalence holds for all n ≤ k and any choice of Ai. We want to now verify
the equivalence for n = k+1, and any choice of Ai:

¬(A1∧A2∧ . . .∧Ak∧Ak+1) = (¬A1)∨ (¬A2)∨ . . .∨ (¬Ak)∨ (¬Ak+1)

Let the clause A′ = A1∧A2∧ . . .∧Ak. We can thus write the left side as ¬(A′∧Ak+1). Using Part
(i), this is equivalent to (¬A′)∧ (¬Ak+1). We also know:

¬A′ ≡ ¬(A1∧A2∧ . . .∧An)≡ (¬A1)∨ (¬A2)∨ . . .∨ (¬An)

This is due to the inductive hypothesis. This gives us the right hand side.
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5 THE BEST THINGS IN LIFE ARE THREE [6/2/4/4/4 POINTS, 20 TOTAL]

5 The Best Things in Life are Three [6/2/4/4/4 Points, 20 Total]
In this section, you may use any previous part’s result, even if you did not complete that part. For example,
if you skip a(i), you can still use the result from a(i) to prove b(ii) and get full credit.

(a) Let G = (V,E) be a planar graph. For a fixed planar drawing of G, there exists a vertex v that touches
each face.

(i) Prove that G\ v (i.e. G without vertex v) is acyclic.

Answer: Fix a planar drawing of G, and let F(G) denote the set of faces of G using this drawing.
Assume for contradiction that G \ v is not acyclic, so it contains a cycle C that bounds a face
f ∈ F(G). We now have two cases for where v can go:

• Case 1: If v belongs inside face f in the planar drawing, then it does not touch any face in
F(G)\ f , which is a contradiction to v touching every face of G.

• Case 2: If v belongs to some face in F(G) \ f , then it cannot touch f , which is also a
contradiction.

(ii) Deduce that G is 3-vertex-colorable.

Answer: Since G\ v is acyclic, it is either a tree or a collection of trees (known as a forest). In
either case, it is bipartite, and thus can be 2-vertex-colored. Then, we can assign a third color to
v to get a valid 3-vertex-coloring for G.

(b) Let G be a graph with exactly two cycles, C1 and C2, that intersect in at most one vertex. Any such G
will always be planar; you may use this fact without proof.

(i) First, prove that if C1 and C2 intersect at some vertex v, the resulting graph is 3-vertex-colorable.

Answer: Fix a planar drawing of G. Since there are exactly two cycles, there are only 3 regions:
the one bounded by C1, the one bounded by C2, and the infinite region. v is incident to all three
regions, so we can apply Part a(ii).

Alternate Solution: Deleting v would render the graph acyclic, so we can color G \ v with two
colors. Then, we can add v back with a third.

(ii) For the remaining parts, we now assume C1 and C2 do not intersect. Prove that there can be at
most one edge between the vertices in C1 and the vertices in C2.

Answer: If we can find 2 edges between vertices in C1 and vertices in C2, we can then form
another cycle C3, a contradiction.

(iii) Deduce that we can find v1 ∈C1 and v2 ∈C2 that are not connected by an edge. Use this fact to
prove that G is 3-vertex-colorable.

Answer: Since C1 and C2 each have at least 3 vertices, and there is at most one edge between
C1 and C2, at least 2 vertices in each cycle do not have edges to the other cycle. This completes
the “deduction.” Now, if we delete v1 and v2 from G, the remaining graph is acyclic, and thus
2-colorable. We can now give both v1 and v2 with the same 3rd color.
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6 ALMOST, BUT NOT QUITE, ENTIRELY UNLIKE (CR)TEA
[2/3/3/2/2/4/4 POINTS, 20 TOTAL]

6 Almost, But Not Quite, Entirely Unlike (CR)Tea
[2/3/3/2/2/4/4 Points, 20 Total]

Let p1, p2, and p3 be distinct primes. Consider the following system of congruences:

x≡ a (mod p1 p2) (1)

x≡ b (mod p2 p3) (2)

where a is some number modulo p1 p2 and b is some number modulo p2 p3.

(a) Fill in the following two congruences such that (1) holds if and only if the following congruences do.

≡ (mod p1) ≡ (mod p2)

Answer: x≡ a (mod p1) and x≡ a (mod p2)

(b) Prove that if (1) holds, the equivalences in part (a) hold.

Answer: If x≡ a (mod p1 p2), we have x = a+ kp1 p2 for some integer k. Taking this equation mod
p1 gives us x≡ a (mod p1); taking it mod p2 gives us x≡ a (mod p2).

(c) Prove that if the equivalences in part (a) hold, (1) holds. (Hint: Use the Chinese Remainder Theorem.)

Answer: The Chinese Remainder Theorem tells us that there is a unique x modulo p1 p2 such that
x ≡ a (mod p1) and x ≡ a (mod p2). We know that a satisfies these congruences, and hence is the
only possible value x could take on modulo p1 p2.

(d) Fill in the following two congruences such that (2) holds if and only if the following congruences do.

≡ (mod p2) ≡ (mod p3)

Answer: x≡ b (mod p2) and x≡ b (mod p3)

(e) Give a condition (using any or all of a, b, p1, p2, or p3) under which there exists an integer x satisfying
both (1) and (2). (Hint: Consider the equivalences from Parts (a) and (d).)

Answer: a≡ b (mod p2)

(f) Prove that if your condition from Part (e) does not hold, no integer x can satisfy both (1) and (2).

Answer: Suppose for contradiction that there was an integer x satisfying both (1) and (2). By Part
(a), we must have that x ≡ a (mod p2); by part (d), we must have that x ≡ b (mod p2). If a 6≡ b
(mod p2), these two statements contradict each other.

(g) Prove that if your condition from Part (e) holds, there exists an integer x satisfying both (1) and (2).
(Hint: Use the Chinese Remainder Theorem again.)

Answer: By the Chinese Remainder Theorem, there exists an integer x such that x ≡ a (mod p1),
x≡ a≡ b (mod p2), and x≡ b (mod p3). Hence, our conditions from parts (a) and (d) hold, meaning
that this x satisfies both (1) and (2).
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7 MALCOLM IN THE MIDDLE [4 POINTS EACH, 16 TOTAL]

7 Malcolm in the Middle [4 Points Each, 16 Total]
1 point for the bubble, 3 for the box. No justification is necessary.
For each part, either mark “for all . . . ” to indicate that Malcolm changes all of the messages, or mark “for
i = __” and fill in the blank if Malcolm only changes one message. Write what the messages get changed to
in the box.

Alice wants to securely send Bob a polynomial p(x) of degree D with coefficients in Z. They use a standard
RSA scheme with public key (N = pq,e). However, a malicious party, Malcolm, intercepts Alice’s messages
and alters them before Bob can receive them.

(a) Alice’s first idea is to choose a set of (D+ 1) points on the polynomial with x-coordinates in Z, and
encrypts both coordinates, so Bob can decrypt them and perform Lagrange interpolation.
She sends {(xe

i (mod N), p(xi)
e (mod N))} to Bob, where xi corresponds to the i-th point.

(i) If Malcolm wants Bob to receive p(−x), which changed message(s) should he send?

for all 1≤ i≤ (D+1) for i = ____

Answer: For all i, Malcolm can send ((−1)e · xe
i (mod N), p(xi)

e (mod N)). The polynomial
p(−x) is p(x) when reflected across the x-axis.

(ii) Now, if Malcolm wants Bob to receive 5 · p(x), which changed message(s) should he send?

for all 1≤ i≤ (D+1) for i = ____

Answer: For all i, Malcolm can send (xe
i (mod N),5e · p(xi)

e (mod N)). Each y-coordinate
should be multipled by 5 before being encrypted.

(b) Alice’s next idea is to encrypt each coefficient.
She sends Bob the set {ce

i (mod N)}, where ci is the coefficient of xi.

(i) If Malcolm wants Bob to receive p(2x), which changed message(s) should he send?

for all 0≤ i≤ D for i = ____

Answer: For all i, Malcolm should send 2ie ·ce
i (mod N). If we compute p(2x), the xi term will

be replaced with (2x)i = 2ixi, so we need to absorb the additional 2i into the coefficient before
encoding it.

(ii) If Malcolm wants Bob to receive p(x)+2 · p(0), which changed message(s) should he send?

for all 0≤ i≤ D for i = ____

Answer: For i= 0, Malcolm should send 3e ·ce
0 (mod N). If we shift the polynomial by 2 · p(0),

it is equivalent to adding 2 · p(0) to the constant term. However, the constant term itself is p(0),
so we are effectively multiplying it by 3.
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