
CS70 Discrete Mathematics and Probability Theory, Spring 2009

Midterm 2 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation (occasionally much more) than an ideal solution. Also, bear in
mind that there may be more than one correct solution. Following some of the solutions, there is some ad-
ditional text in italics that explains some common mistakes. The maximum total number of points available
is 60.

1. Coloring Hypercubes

(a) Let red and blue denote our colors. We will prove by induction on n that the n-dimensional hypercube 5pts
is 2-vertex-colorable for every n.
Base case: For n = 1, the hypercube is a single edge. If we color one vertex red and the other blue we
have a 2-vertex coloring, since the adjacent vertices are colored differently.
Inductive Step: Assume we’ve shown this to hold for n-dimensional hypercubes, we will show this
holds for n + 1-dimensional hypercubes. Recall that we can define an n + 1 dimensional hypercube
as two n-dimensional hypercubes where every vertex i in the first hypercube is connected to vertex
i in the second hypercube. Considering this definition, for a given n + 1 dimensional hypercube, let
H0,H1 denote the first and second n-dimensional hypercubes, respectively.
By the inductive hypothesis, we assume that H0 is 2-vertex colorable, and therefore there exists some
coloring scheme which is a legal 2-vertex coloring of H0. Given this coloring, we will color H1 in
the opposite coloring scheme which, given a color of vertex i in H0 assigns the opposite color to the
vertex i in H1. Since we colored the vertices in both H0 and H1, we have colored all the vertices in
the hypercube. It remains to show that this coloring scheme is legal.
Assume, for purpose of contradiction that there is a given vertex i in H1 which has an adjacent neigh-
bor colored with the same color. If that neighbor is in H1, then this means that the coloring of H1 is not
legal. Observe that if a coloring scheme is a legal 2-vertex coloring on some graph G, then the opposite
coloring scheme is also a legal 2-vertex coloring on G. Since we colored H1 with the opposite scheme
of H0, and H0 is identical to H1, this implies that the coloring of H1 is a legal 2-vertex coloring, which
contradicts having two adjacent vertices in H1 sharing the same color. If the neighbor is in H0, then
we know, by definition of the n + 1-dimensional hypercube, that the neighbor must be i in H0. In
our coloring however, we colored i in H0 and i in H1 in opposite colors, which again contradicts our
assumption. Similarly, we can show for the case where i is in H0.

The majority did well on this problem. A different approach that could have been taken is to color the
vertices in the hypercube according to their parity. Some people gave an algorithm for coloring the
vertices, though did not prove its correctness.

(b) We will again prove by induction on n, and show that the n-dimensional hypercube is n-edge-colorable 5pts
for every n.
Base case: For n = 1, the hypercube is a single edge, and using any color is a legal coloring.
Inductive Step: Assume we’ve shown this to hold for n-dimensional hypercubes, we will show this
holds for n+1-dimensional hypercubes. We will again use the recursive definition of the hypercube as
we did above, again denoting H0 and H1 as the two n-dimensional hypercubes that compose our n+1-
dimensional hypercube. Observe that this definition partitions the set of edges to three disjoint sets:
edges that are only in H0, edges that are only in H1 and edges which connect H0 and H1. According
to our inductive hypothesis we know we can color the edges of H0 and H1 using n colors, so that no
two adjacent edges have the same color. We can therefore color the edges of H0 and H1 according
to these coloring schemes, and we will color the edges which connect between H0 and H1 with some



different color, which is not used in the edge coloring of either H0 or H1. We have therefore colored
all the edges of the hypercube with at most n + 1 colors, and it remains to show that this coloring
scheme is legal.
Assume for purpose of contradiction that there is a given edge e which has an identical color to one of
its adjacent edges. If e is an edge in H1, since we colored H1 in a legal edge coloring, we know all its
adjacent edges in H1 are colored with a different color. Therefore it must be the case that the adjacent
edge is an edge which connects H1 and H0. This however, contradicts our specification of using a new
color for the connecting edges. A similar statement can be shown for an edge in H0. If we assume that
e is an edge that connects between H1 and H0, the previous argument shows that the adjacent edge
that has the same color cannot be in H1 and H0. Therefore, the only possibility would be that there
is some other edge that connects between H1 and H0 which is adjacent to e. Let i be the index for
which e connects between i in H0 and i in H1. If there is an adjacent edge e′ to e which connects
between H1 and H0, it must be the case that e′ connects between i in H0 and some other vertex j 6= i
in H1 or between j 6= i in H0 and i in H1. This, however, contradicts our recursive definition of the
n + 1-dimensional hypercube.

A common error here was showing that we need at least n colors to have a legal coloring of the n-
dimensional hypercube, which is almost trivial. You should have shown that you need at most n colors
for a legal coloring of the hypercube. Some people argued that each vertex has only n adjacent edges
and therefore we can color them in different colors. To make this argument work one needs to show
how all edges in the hypercube can be colored in a manner that guarantees that no two adjacent edges
will be colored in the same color. Many people who used an approach similar to the one presented
above did not prove why one can color the connecting edges in a new color and still have a legal
coloring.

2. Random Graphs

(a) Vertex 1 is isolated if and only if all of the possible edges connecting 1 to the other vertices in the 2pts
graph are absent. The number of such edges is n − 1, and each of them is absent independently with
probability 1− p. Hence we get

Pr[1 is isolated] = (1− p)n−1.

Most people got this right. One fairly common minor mistake was to write (1 − p)n instead of (1 −
p)n−1, forgetting that there are only n− 1 (rather than n) possible edges incident at a vertex. A more
serious mistake was to write pn−1 instead of (1 − p)n−1, forgetting that the probability of an edge
being absent is 1− p, not p. Quite a few students wrote down a formula that bore little resemblance to
any of the above, and seemed to misunderstand the question.

(b) Vertices 1 and 2 are both isolated if and only if the edge between them, and all edges connecting either 3pts
of them to other vertices in the graph, are absent. The total number of such edges is 1 + 2(n − 2) =
2n− 3. Hence, as in part (a), the probability is

Pr[1 and 2 are isolated] = (1− p)2n−3.

An alternative approach is to use conditional probability. Let E1, E2 denote the events that vertex 1 is
isolated and vertex 2 is isolated respectively. We want to compute Pr[E1 ∩E2]. By the chain rule, this
is given by Pr[E1 ∩E2] = Pr[E1]× Pr[E2 | E1]. From part (a), we know that Pr[E1] = (1− p)n−1.
And it is easy to see that Pr[E2 | E1] = (1 − p)n−2, because once we know that vertex 1 is isolated
we know that edge {1, 2} is absent, so we only need to rule out n − 2 additional edges to ensure that
vertex 2 is isolated. Hence Pr[E1 ∩ E2] = (1− p)n−1 × (1− p)n−2 = (1− p)2n−3.



A common incorrect answer here was (1− p)2n−2, which is obtained by assuming that the events that
vertex 1 and vertex 2 are isolated are independent and therefore just squaring the probability from
part (a), or equivalently, by forgetting that the edge {1, 2} is incident on both vertices and double-
counting it when excluding edges.

(c) Let E1, E2 be the events that vertex 1 is isolated and vertex 2 is isolated respectively. Our goal is to 3pts
compute Pr[E1 ∪ E2]. By inclusion-exclusion, we have

Pr[E1 ∪ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∩ E2].

But from part (a) we have Pr[E1] = Pr[E2] = (1− p)n−1, and from part (b) we have Pr[E1 ∩ E2] =
(1− p)2n−3. Hence the desired probability is

2(1− p)n−1 − (1− p)2n−3.

A common error here was to incorrectly quote the inclusion-exclusion principle by changing the minus
sign to a plus sign. Another error was to simply sum Pr[E1] + Pr[E2], which is incorrect because E1

and E2 are not disjoint events. Finally, a surprising number of students seemed to think that Pr[E1]
and Pr[E2] are different!

(d) In order that vertices 1,2,3 form an isolated triangle, we need the three edges {1, 2}, {2, 3} and {1, 3} 3pts
to be present, and all other edges between these three vertices and the rest of the graph to be absent;
the number of such other edges is 3(n− 3). Hence the probability we want is

p3(1− p)3(n−3).

Some people got very confused in this part. Among those who got it almost (but not quite) right, the
most common error was to forget one of the factors of (n− 3) in the exponent of (1− p). This usually
resulted from trying to use conditional probability and the chain rule, but not being careful enough
about computing the conditional probabilities.

3. Counting

(a) In this problem, we are allowed to encode letters by any string of dots and dashes, which has length 3pts
at most 10. Thus, we count separately the number of letters that can be formed using exactly i dots
and dashes for all 1 ≤ i ≤ 10. There are 2i different strings of length i that can be formed using dots
and dashes (since for every position of the string, we have a choice of two symbols). Hence, the total
number of letters that can be formed are

10∑
i=1

2i = 2046

The most common error for this part was to ignore the “at most” and consider only strings of length
exactly 10.

(b) For each pair of vertices {u, v} in the graph, we are deciding whether to put an edge between them or 3pts
not. Hence, if the number of possible pairs is P , then the number of graphs is 2P , since for each pair
we have 2 choices (whether to put an edge or not) irrespective of what we did for the other pairs. Also,
the number of pairs is just the number of ways we can choose two vertices to form a pair, which is

(
n
2

)
.

Hence, the number of possible graphs is 2(n
2).

A large number of people counted the number of possible edges (the number of pairs) to be (n − 1)!
in this problem.



(c) To construct an ordering of the numbers from 1 to 2n, we proceed in the following way: we pick n 3pts
slots out of the 2n possible ones, where we put the numbers from 1 to n (there is only one way to put
them in these slots), and then we arrange the numbers from n + 1 in the remaining slots. The number
of ways to pick the slots for the numbers from 1 to n is

(
2n
n

)
and the number of ways to arrange the

numbers n + 1, . . . , 2n in the remaining n slots is n!. Hence, the total number of possible orderings is(
2n

n

)
× n! =

(2n)!
n!n!

× n! =
(2n)!
n!

(d) If we remove the restriction that each committee must contain at least one member, then for each 3pts
person we have 3 choices: whether to be in the Arts committee, to be in the Education committee or to
be in neither of them. Hence, the total number of ways to choose the committees under this assumption
is 3n.
However, now we need to subtract the number of ways in which we might be forming an empty
committee. The number of ways in which we can form the committees so that the Arts committee has
no members is 2n (since then each person must be either in Education committee or in no committee).
Similarly, the number of ways in which we can form an empty Education committee is 2n. Subtracting
these gives the number of ways as 3n − 2 · 2n. But we have subtracted the case when both committees
are empty twice (since it is included both in cases when the Arts committee is empty or the Education
committee). There is only one way in which both committees can be empty and we need to add this
back once to take care of the double subtraction. Hence, the total number of ways is

3n − 2 · 2n + 1

There were two common mistakes in this problem. One was to again ignoring the “at most” and taking
each person to be in exactly one committee. The second mistake was to take the people as identical (!)
and solve the problem using unordered balls and bins.

(e) We break this into two cases: either the social security number has exactly 9 digits or it has exactly 3pts
8 digits. Let us consider the case with exactly 9 digits first. For this to happen, all the digits in the
social security number must be different. Thus, we have 10 choices for the first digit, 9 choices for the
second digit, 8 choices for the third one and so on. The number of social security numbers with exactly
9 digits is

10× 9× 8× 7× 6× 5× 4× 3× 2 = 10!

Now we count the number of social security numbers with exactly 8 digits. To do this, we can choose
the 8 digits we want to use in

(
10
8

)
ways. Once we have chosen the digits, we can pick the digit which

will appear twice in
(
8
1

)
ways. Now we are simply left with the problem of ordering 7 distinct digits

and 2 copies of one digits. This can be done in 9!
2! ways. So the total number of SSNs with exactly 8

different digits is (
10
8

)
×

(
8
1

)
× 9!

2!
=

10× 9
2× 1

× 8× 9!
2!

= 18× 10!

Hence, the total number of ways is 10! + 18× 10! = 19× 10!.
A common error for this part was ignoring the issue of ordering and just counting the number of ways
of choosing the digits. However, this does not suffice as different orderings of the digits definitely give
different Social Security Numbers. Also, a large number of students counted to number of SSNs with 9
different digits as 9! instead of 10!.

4. Colorful Jelly Beans

(a) The correct way to think of this problem is in terms of 100 unlabeled balls (the jelly beans) in 3 labeled 3pts
bins (the colors red, orange, yellow). Recall from class that we have a formula for this:

(
n+k−1

k

)
, where



k is the number of balls and n is the number of bins. Therefore, the correct answer for this section is
N =

(
102
100

)
= 5151.

A very common mistake in this section was people mixing up n and k in the formula; also, some
people gave the answer 3100 - this is the case when both the balls and the bins are labeled (it would
be a situation where it also matters which jelly beans are which color, and not just the total number of
jelly beans of a given color).

(b) The probability that two jars of jelly beans are the same is 1
n . There are many ways to arrive at this 2pts

result; one way to think of this is given the configuration of the first jar of jelly beans, there is one
choice out of n for the configuration of the second jar of jelly beans that causes it to be the same as
the first jar of jelly beans. We can also use a counting argument: there are exactly n2 different ways
to assign configurations to the first two jars of jelly beans, and of those n2 choices there n choices that
result in them being the same. Therefore, the probability that they are the same is n

n2 = 1
n . However,

we are looking for the probability that two jars of jelly beans are different, which is 1− 1
n .

(c) We extend the result of part (b). The probability that the second jar of jelly beans is different from the 3pts
first is

(
1− 1

n

)
, as described above. The probability that the third jar of jelly beans is different from

the first two (given that the first two is different) is
(
1− 2

n

)
. We can continue this line of reasoning

to the probability the the mth jar of jelly beans is different from the first m − 1 (given that the first
m − 1 are different) - it is

(
1− m−1

n

)
. Therefore, the probability that all of the m jars of jelly beans

are different is
(
1− 1

n

) (
1− 2

n

)
· · ·

(
1− m−1

n

)
.

(d) In this section we were looking for you to recognize that you are supposed to apply the result from hash
tables (or the birthday paradox). The main point was to realize that in order to have the probability of 3pts
collision be greater than 1

2 that you would need m to be on the order of
√

N . Since N = 5151, m
would have to be on the order of 100. Many people actually remembered the formula from class and
arrived at the result that m = 1.177

√
N ≈ 84. Full credit were given for such answers, but what we

were looking for was the order of magnitude to be 100.
Many people had the right approach to this section although this missed the answer to part (a). Full
credit was given if they had the right approach with an incorrect value of N .

5. Learning and Betting

(a) Let A be the event that the good coin is picked and B be the event that the randomly chosen coin 3pts
comes up Head. By the total probability rule,

Pr[B] = Pr[B|A] Pr[A] + Pr[B|Ā] Pr[Ā] = 0.55× 0.5 + 0.2× 0.5 = 0.375. (1)

Since this probability is less than 0.5, it is not a good game to play.

(b) By Bayes’ rule, 5pts

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]
=

0.55× 0.5
0.375

= 0.734,

which means that the conditional probability that I picked a good coin given I saw a Head is greater
than 0.5, so I will keep this coin for my next flip.
Let C be the event that I will get a Head on my next flip (using the same coin). Applying the total
probability rule to the event C under the condition B, we get:

Pr[C|B] = Pr[C|A,B] Pr[A|B]+Pr[C|Ā, B] Pr[Ā|B] = 0.55×0.734+0.2×0.266 = 0.460. (2)

Since this is still less than 0.5, I would not place a bet.



Many people argued this by saying that conditional on seeing a Head from the first flip, we are in a new
sample space where the probability of the chosen coin being the good coin is Pr[A|B] = 0.734 instead
of Pr[A] = 0.5 in the calculation of Pr[B] in eqn (1). This is what the calculation in (2) formalizes
but the informal argument earns a full score as well. Another solution is to go to the full sample space
where the sample points are the triples (x, y, z), where x = G if the good coin was selected and x = B
otherwise, y = H if the first flip is a Head and y = T otherwise, and z = H if the second flip is a
Head and z = T otherwise. The conditional probability Pr[C|B] can be explicitly calculated.

(c) Let D be the event that two heads are observed. By the total probability rule, 5pts

Pr[D] = Pr[D|A] Pr[A] + Pr[D|Ā] Pr[Ā] = (0.55)2 × 0.5 + (0.2)2 × 0.5 = 0.17. (3)

By Bayes’ rule,

Pr[A|D] =
Pr[D|A] Pr[A]

Pr[D]
=

(0.55)2 × 0.5
0.17

= 0.88

So obviously we should stick to the same coin for the third flip. Let E be the event that the third flip is
a Head. By total probability rule,

Pr[E|D] = Pr[E|A,D] Pr[A|D] + Pr[E|Ā,D] Pr[Ā|D] = 0.55× 0.88 + 0.2× 0.12 = 0.509.

Now, it’s worth a bet!.


