
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner MT 1 Soln

Problem 1. [True or false] (12 points)

(a) TRUE or False : The propositions P =⇒ Q and Q =⇒ P are logically equivalent.

(Converse error.)

(b) True or FALSE: The proposition Q∨P∨ (P =⇒ Q) is guaranteed to be true, no matter what the truth
values of P and Q may be.

(Equivalent to Q∨P∨ (¬P∨Q).)

(c) TRUE or False : If we are told that the proposition P is true, we are entitled to conclude that ((P =⇒
Q) =⇒ P) =⇒ Q must also be true.

(Try Q = false.)

(d) True or FALSE: ∀n ∈ N . (x2 − x = 0)∨ (x ≥ 2).

(True for x = 0,1,2, . . .)

(e) TRUE or False : ∀x ∈ N . ∃y ∈ N . ∀z ∈ N . x+ y = z.

(Counterexample: z = x+ y+1.)

(f) True or FALSE: ∀x ∈ N . ∃y ∈ N . x2 = y.

(y is allowed to depend on x, since it appears on the inside.)

(g) TRUE or False : (∀x ∈ N . ∃y ∈ N . x < y) ≡ (∃y ∈ N . ∀x ∈ N . x < y).

(Not logically equivalent: the left-hand side is true, but the right-hand side is false.)

(h) True or FALSE: Let P(n) denote the proposition that 1 + 2 + · · ·+ n + (n + 1) = n(n + 1)/2. Then
∀n ∈ N . P(n) =⇒ P(n+1) is true.

(P(n) = false for all n ∈ N, so the implication is of the form “false =⇒ false”.)

(i) True or FALSE: Define the relation ≺ so that n ≺ m iff n divides m and n < m. Then the relation ≺ is
a well-ordering on N.

(Any subset of N has a minimal element under ≺: its smallest element will be minimal.)

(j) True or FALSE: Any 2-party cake-cutting protocol that is fair is also envy-free.

(If Alice receives x ≥ 1
2 of the cake, then Bob receives 1− x ≤ 1

2 ≤ x.)

(k) TRUE or False : In the stable marriage problem, if M denotes the male-optimal matching, then there
exists a girl who does not get her optimal boy in M (i.e., her mate in M is not her optimal boy).

(If bi lists gi as his top choice, and vice versa, then there is only one stable pairing; it is simultaneously
male- and female-optimal.)

CS 70, Spring 2005, MT 1 Soln 1

(l) TRUE or False : Suppose that we have n boys, b1, . . . ,bn, and n girls, g1, . . . ,gn. Assume that g1 lists b1

as her top choice, g2 lists b2 as her top choice, and so on, so that bi appears at the front of gi’s preference
list for all i. If we run the Traditional Marriage Algorithm, then the resulting matching is guaranteed to
match gi to bi for all i.

(Let n = 2, b1 likes g2 best, b2 likes g1 best; then TMA gives the boys their top choices, but not the girls.)

Problem 2. [A peculiar sequence] (6 points)

Define u0 = u1 = 1, and define un = (n−1)un−2 for n = 2,3,4, By convention, 0! = 1.

Prove that un+1un = n! for all n ∈ N.

Proof by simple induction on n, with the predicate P(n) = “un+1un = n!”.

Base case: For n = 0, we have u1u0 = 1 = 0!.

Inductive step: Assume un+1un = n!. Then, by the definition of un+2, we have un+2 = (n + 1)un (since
n+2 ≥ 2). Moreover,

un+2un+1 = (n+1)un−1un

= (n+1)n! (by the inductive hypothesis)

= (n+1)!

Therefore P(n) =⇒ P(n+1) for all n ∈ N, so the claim follows by induction.

CS 70, Spring 2005, MT 1 Soln 2

Problem 3. [Recognizing complete binary trees] (6 points)

A binary tree is a tree with the property that every internal node (i.e., every non-leaf node) has exactly two
children. A binary tree is called complete if all its leaves are at the same depth.

Assume that if T is a tree, then the helper function (leaf? T) returns true iff T has no children. Also, if
T is a tree with children, then (left T) returns the left subtree of T and (right T) returns the right
subtree of T. Consider the following algorithm:

(define (complete? T)
(if (leaf? T)

#t
(and (complete? (left T)) (complete? (right T)))))

Here is an attempt to prove this algorithm correct.

Theorem 0.1: For all trees T, if (complete? T) returns true, then there exists k ∈ N such that every
leaf is at distance k from the root of T.

Proof: Use proof by structural induction. Base case: Suppose the tree T has no children, so that (leaf?
T) returns true. Then (complete? T) also returns true, and moreover every leaf is at distance 0 from
the root (i.e., k = 0), so the implication is true in this case.

Inductive step: Assume the claim is true for trees TL and TR. Suppose the tree T is constructed so that the
left subtree of the root is TL, and the right subtree is TR. Assume (complete? T) returns true. By the
definition of (complete? T), this means that (complete? TL) and (complete? TR) must both
have returned true. Then, by the induction hypothesis, there is some k so that every leaf of TL is at distance
k from the root of TL. Similarly, there is some k so that every leaf of TR is at distance k from the root of
TR. In both cases, the leaf is at distance k + 1 from the root of T (by the way that T was constructed from
TL and TR). Also, every leaf of T falls into one of these two cases. Consequently, we have proven that if
(complete? T) returns true, then there exists k′ ∈ N so that every leaf of T is at distance k′ from the root
of T (in fact, k′ = k +1). 2

Please tell us whether this proof is valid. In particular, answer each of the following questions with “Yes” or
“No”, and explain your answer:
(a) Is the use of structural induction appropriate?

Yes. Structural induction is a fine way to prove that something is true for all binary trees.

(b) Is the proof of the base case ok?

Yes. The base case is indeed a tree with just one node.

(c) Is the proof of the inductive step ok?

No! It is true that every leaf of TL is at distance kL from the root of T, for some kL, and likewise every leaf
of TR is at distance kR from the root—but there is no guarantee that kL = kR.

(d) Bottom line: Is the proof valid?

No. The inductive step is wrong. In fact, the claim is false: complete? T might return true on an input
that is not a complete tree.

CS 70, Spring 2005, MT 1 Soln 3

Problem 4. [Working with expressions some more] (8 points)

This question involves expressions generated by the following rules. (Note that rule 2. is slightly different
from what you saw on a previous quiz.)

1. A single digit is an expression.

2. If E1 and E2 are expressions, then E1 E2 is an expression.

3. If E is an expression, then (E) is an expression.

Prove that no expression generated by the three rules above contains an open parenthesis immediately fol-
lowed by a close parenthesis, i.e. “()”.

Proof by strong induction on the number of applications of the rules. Let P(k) =“for every expression E
generated using exactly k applications of the above rules, E contains no (), E does not start with), E does
not end with (, and E is not empty”.

Base case: For k = 1, the only way to get an expression is by application of rule 1. A single digit contains
no parentheses, so it contains (), does not start with), does not end with (, and is not empty.

Inductive step: Suppose P(1)∧ ·· · ∧ P(k) is true, i.e., every expression generated using at most k rule-
applications has no (), doesn’t start with), end with (, and isn’t empty. We will prove that P(k + 1) is true.
Let E denote any expression generated using exactly k +1 rule-applications. There are three cases, divided
into which rule was used in the k +1th rule-application:

1. If the last rule was Rule 1.: E is a single digit, so it contains no (), doesn’t start with) or end with (,
and is non-empty.

2. If the last rule was Rule 2.: E = E1E2 for some expressions E1 and E2. E1 must have been generated
using at most k rule-applications and thus (by the inductive hypothesis) has no (), doesn’t end in (,
and is non-empty. Likewise, E2 has no (), doesn’t start with), and is non-empty. It follows that
the concatenation E1E2 has no (), by considering where a (could occur (anywhere in E1 except the
last symbol, and anywhere in E2) and using the fact that neither E1 nor E2 has (). Moreover, E1E2

doesn’t start with) (since E1 doesn’t, and is non-empty), doesn’t end with ((since E2 doesn’t, and is
non-empty), and E1E2 is non-empty (since E1 is non-empty).

3. If the last rule was Rule 3.: E = (E1), for some expression E1. E1 must have been generated using at
most k rule-applications and thus (by the inductive hypothesis) has no (), doesn’t end in (or start with
), and is non-empty. It follows that (E1) has no (): the first (in (E1) is not immediately followed by
a) (since E1 is non-empty); and any other (in (E1) is not immediately followed by a), since such a
(must occur in E1, not at the end of E1, and thus cannot be immediately followed by a). Moreover,
(E1) does not start with) or end with (, and is not empty.

Alternate approach: You could have used P(k) = “no expression generated with k rule-applications con-
tains a ()”, and then proved a separate Lemma stating that no expression starts with), ends with (, or is
empty. Such a Lemma could also be proved using strong induction.

CS 70, Spring 2005, MT 1 Soln 4

Common errors:

• Many answers started from an example of something that would be bad, and then tried to prove it
couldn’t happen. (What about other bad things?)

Some people tried to argue that () is not an expression, and stopped there. But that is not enough: you
had to show that no expression contained () as a substring.

• Converse errors were common. Example: “Suppose E = (E1) is an expression. Then E1 must be an
expression.” — wrong. (Counterexample: E = (1)(2).)

Some answers tried starting with an expression and ‘breaking it down’, but such proofs usually failed
to justify why you can ‘break an expression down’ and often succumbed to converse errors.

• Many people failed to state what induction predicate P(n) they were using, or what kind of induction
they were using (simple? strong? structural? infinite descent?).

• If you use induction on the number of rules, you need to use strong induction. Suppose E was
generated using k+1 rule-applications, and E = E1E2 (by Rule 2.). You need to take into account the
possibility that E1 and E2 were generated with strictly less than k rule-applications.

• Many proofs did a case analysis of how some expression could arise, but failed to check that the cases
covered all possibilities. Example: “Let E be an expression of size n + 1. The only way to get E out
of an expression of size n is by . . . ” (What if there is some other way to get E? For instance, what if
E is built out of an expression E1 of size 2 and an expression E2 of size n−2?)

• Some people noticed that we need the fact that no expression starts with), ends with (, or is empty—
but then asserted this without proof. Recognizing this subtlety is good, but you also need to prove that
this invariant holds (e.g., by induction).

• A common error was to assert that the induction hypothesis applies without explaining why. A rarer
error was to assume what was to be proven. Example: “Let P(k) = ‘no expression with k digits
contains a ()’. To show: P(k) =⇒ P(k +1). Consider any expression E = (E1) with k +1 digits. By
the induction hypothesis, E1 contains no (), therefore...” — bogus. (E1 has k + 1 digits, so you need
to assume P(k +1) to prove P(k +1).)

• Example: “Rule 3. is the only rule that adds parentheses, so no expression can start with) [or, contain
(), or . . .].” (Fails to consider the possibility that some other rule might introduce the forbidden string
without adding any new parentheses. For instance, maybe Rule 2. takes a) and moves it to the front.
It doesn’t, but this could use justification.)

• Some people tried using predicates that make induction too hard. Example: “Let n = the number of
applications of Rule 3.” (Base case becomes non-trivial: there are infinitely many expressions formed
without any use of Rule 3.) Example: “Let n = the number of digits.” (The induction step becomes
too hard, because we could apply Rule 3. many times without changing n.)

Stylistic advice on good proofs:

• All variables in a proof should be immutable. Don’t try changing the meaning of a variable. Example:
“We start with E, and we add parentheses surrounding it, and afterwards E still contains no ().”

CS 70, Spring 2005, MT 1 Soln 5

• Be wary of type errors. Example: “The expression P(n) has no ().” — wrong. (P(n) is a boolean
proposition, not an expression.)

• If you haven’t used the induction hypothesis anywhere in your proof, that is suspicious.

CS 70, Spring 2005, MT 1 Soln 6

Problem 5. [A variant on merge sort] (8 points)

Let Fk denote the kth Fibonacci number. Reminder: the Fibonacci numbers are defined by F0 = F1 = 1, and
Fk = Fk−1 +Fk−2 for k ≥ 2. Consider the following variation on merge sort, which assumes that the number
of elements in its list argument L is a Fibonacci number Fk.

algorithm FibMergesort(L)
{L is a list of items from a totally ordered set, whose length is a Fibonacci number Fk}
if L contains only 1 element, then return L
else

divide L into L1 (the first Fk−1 items) and L2 (the remaining Fk−2 items)
sortedL1 := FibMergesort(L1)
sortedL2 := FibMergesort(L2)
sortedL := Merge(sortedL1,sortedL2)
return sortedL

Assuming that the “divide” step in FibMergesort takes constant time (no comparisons) and Merge behaves
as described in the lecture notes, identify which of the following expressions most closely matches the total
number of comparisons performed by FibMergesort when initially given a list of Fk elements.

(a) O(k log k)

(b) O(k2)

(c) O(k Fk)

(d) O(Fk log k)

(e) O(F2
k)

The depth of the recursion tree is k−1. The total number of comparisons done at each level of the tree is at
most Fk, since the size of the lists at each level sum to Fk, and the number of comparisons used by Merge is
no more than the total list size. (In fact, we do strictly less than Fk comparisons at the bottom k/2 levels, but
that’s OK.) Thus the total number of comparisons is the number of levels times the number of comparisons
done per level, or O(k Fk).

Alternate answer: Let T (k) = the number of comparisons performed by FibMergesort on an input list of
size Fk. Then T (k) = T (k−1)+T (k−2)+Fk −1 (since Merge uses Fk −1 comparisons to merge two lists
of total size Fk), and T (1) = T (0) = 0.

Claim: T (k) ≤ k Fk for all k.

Proof: By strong induction on k. Base cases: T (0) = 0 ≤ 0 ·1 and T (1) = 0 ≤ 1 ·1. Inductive step: Assume
it is true for k−1 and k−2. Then

T (k) = T (k−1)+T (k−2)+Fk −1

≤ (k−1)Fk−1 +(k−2)Fk−2 +Fk −1 (by the inductive hypothesis)

≤ (k−1)Fk−1 +(k−1)Fk−2 +Fk

≤ (k−1)Fk +Fk ≤ k Fk.

2

CS 70, Spring 2005, MT 1 Soln 7

