
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner MT 1

PRINT your name: ,
(last) (first)

SIGN your name:

PRINT your class account name: cs70-

Name of the person sitting to your left:

Name of the person sitting to your right:

You may consult any books, notes, or other paper-based inanimate objects available to you. Calculators and
computers are not permitted. Please write your answers in the spaces provided in the test; in particular, we
will not grade anything on the back of an exam page unless we are clearly told on the front of the page to
look there.

You have 80 minutes. There are 5 questions, of varying credit (40 points total). The questions are of varying
difficulty, so avoid spending too long on any one question.

Do not turn this page until your instructor tells you to do so.

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Total

CS 70, Spring 2005, MT 1 1

Problem 1. [True or false] (12 points)

Circle TRUE or FALSE. You do not need to justify your answers on this problem.

Reminder: N = {0,1,2,3, . . .} represents the set of non-negative integers.

(a) TRUE or FALSE: The propositions P =⇒ Q and Q =⇒ P are logically equivalent.

(b) TRUE or FALSE: The proposition Q∨P∨ (P =⇒ Q) is guaranteed to be true, no matter what the truth
values of P and Q may be.

(c) TRUE or FALSE: If we are told that the proposition P is true, we are entitled to conclude that ((P =⇒
Q) =⇒ P) =⇒ Q must also be true.

(d) TRUE or FALSE: ∀n ∈ N . (x2 − x = 0)∨ (x ≥ 2).

(e) TRUE or FALSE: ∀x ∈ N . ∃y ∈ N . ∀z ∈ N . x+ y = z.

(f) TRUE or FALSE: ∀x ∈ N . ∃y ∈ N . x2 = y.

(g) TRUE or FALSE: (∀x ∈ N . ∃y ∈ N . x < y) ≡ (∃y ∈ N . ∀x ∈ N . x < y).

(h) TRUE or FALSE: Let P(n) denote the proposition that 1 + 2 + · · ·+ n + (n + 1) = n(n + 1)/2. Then
∀n ∈ N . P(n) =⇒ P(n+1) is true.

(i) TRUE or FALSE: Define the relation ≺ so that n ≺ m iff n divides m and n < m. Then the relation ≺ is
a well-ordering on N.

(j) TRUE or FALSE: Any 2-party cake-cutting protocol that is fair is also envy-free.

(k) TRUE or FALSE: In the stable marriage problem, if M denotes the male-optimal matching, then there
exists a girl who does not get her optimal boy in M (i.e., her mate in M is not her optimal boy).

(l) TRUE or FALSE: Suppose that we have n boys, b1, . . . ,bn, and n girls, g1, . . . ,gn. Assume that g1 lists b1

as her top choice, g2 lists b2 as her top choice, and so on, so that bi appears at the front of gi’s preference
list for all i. If we run the Traditional Marriage Algorithm, then the resulting matching is guaranteed to
match gi to bi for all i.

CS 70, Spring 2005, MT 1 2

Problem 2. [A peculiar sequence] (6 points)

Define u0 = u1 = 1, and define un = (n−1)un−2 for n = 2,3,4, By convention, 0! = 1.

Prove that un+1un = n! for all n ∈ N.

CS 70, Spring 2005, MT 1 3

Problem 3. [Recognizing complete binary trees] (6 points)

A binary tree is a tree with the property that every internal node (i.e., every non-leaf node) has exactly two
children. A binary tree is called complete if all its leaves are at the same depth.

Assume that if T is a tree, then the helper function (leaf? T) returns true iff T has no children. Also, if
T is a tree with children, then (left T) returns the left subtree of T and (right T) returns the right
subtree of T. Consider the following algorithm:

(define (complete? T)
(if (leaf? T)

#t
(and (complete? (left T)) (complete? (right T)))))

Here is an attempt to prove this algorithm correct.

Theorem 0.1: For all trees T, if (complete? T) returns true, then there exists k ∈ N such that every
leaf is at distance k from the root of T.

Proof: Use proof by structural induction. Base case: Suppose the tree T has no children, so that (leaf?
T) returns true. Then (complete? T) also returns true, and moreover every leaf is at distance 0 from
the root (i.e., k = 0), so the implication is true in this case.

Inductive step: Assume the claim is true for trees TL and TR. Suppose the tree T is constructed so that the
left subtree of the root is TL, and the right subtree is TR. Assume (complete? T) returns true. By the
definition of (complete? T), this means that (complete? TL) and (complete? TR) must both
have returned true. Then, by the induction hypothesis, there is some k so that every leaf of TL is at distance
k from the root of TL. Similarly, there is some k so that every leaf of TR is at distance k from the root of
TR. In both cases, the leaf is at distance k + 1 from the root of T (by the way that T was constructed from
TL and TR). Also, every leaf of T falls into one of these two cases. Consequently, we have proven that if
(complete? T) returns true, then there exists k′ ∈ N so that every leaf of T is at distance k′ from the root
of T (in fact, k′ = k +1). 2

This problem is continued on the following page.

CS 70, Spring 2005, MT 1 4

Please tell us whether this proof is valid. In particular, answer each of the following questions with “Yes” or
“No”, and explain your answer:
(a) Is the use of structural induction appropriate?

(b) Is the proof of the base case OK?

(c) Is the proof of the inductive step OK?

(d) Bottom line: Is the proof valid?

CS 70, Spring 2005, MT 1 5

Problem 4. [Working with expressions some more] (8 points)

This question involves expressions generated by the following rules. (Note that rule 2. is slightly different
from what you saw on a previous quiz.)

1. A single digit is an expression.

2. If E1 and E2 are expressions, then E1 E2 is an expression.

3. If E is an expression, then (E) is an expression.

Prove that no expression generated by the three rules above contains an open parenthesis immediately fol-
lowed by a close parenthesis, i.e. “()”.

CS 70, Spring 2005, MT 1 6

Problem 5. [A variant on merge sort] (8 points)

Let Fk denote the kth Fibonacci number. Reminder: the Fibonacci numbers are defined by F0 = F1 = 1, and
Fk = Fk−1 +Fk−2 for k ≥ 2. Consider the following variation on merge sort, which assumes that the number
of elements in its list argument L is a Fibonacci number Fk.

algorithm FibMergesort(L)
{L is a list of items from a totally ordered set, whose length is a Fibonacci number Fk}
if L contains only 1 element, then return L
else

divide L into L1 (the first Fk−1 items) and L2 (the remaining Fk−2 items)
sortedL1 := FibMergesort(L1)
sortedL2 := FibMergesort(L2)
sortedL := Merge(sortedL1,sortedL2)
return sortedL

Assuming that the “divide” step in FibMergesort takes constant time (no comparisons) and Merge behaves
as described in the lecture notes, identify which of the following expressions most closely matches the total
number of comparisons performed by FibMergesort when initially given a list of Fk elements.

(a) O(k log k)

(b) O(k2)

(c) O(k Fk)

(d) O(Fk log k)

(e) O(F2
k)

Justify your answer.

CS 70, Spring 2005, MT 1 7

