CS70 Discrete Mathematics for Computer Science, Fall 2007
Midterm 1 Solutions

Note: These solutions are not necessarily model answetheR#hey are designed to be tutorial in nature,
and sometimes contain more explanation (occasionally nmuafe) than an ideal solution. Also, bear in
mind that there may be more than one correct solution. Theémanr total number of points available is 60.

1. Quick Questions

(@) The truth tables are as follows: 6pts

P Q [P=Q|Q=P|P&Q
true | true | true true true
true | false| false true false
false | true true false false
false | false| true true true

Almost all people got this question right. The most commatake was in the table faP < Q.

(b) (i) and (iii) are valid strategies. (ii) and (iv) are iichstrategies. Although they were not require®pts
here are explanations for these answers:

The original statement islx P(z)) = (Yy Q(y)).

(): The contrapositiveis (Jy -Q(y)) = (Yx —=P(x)). The contrapositive is logically equivalent
to the original statement. Thus, we can approach this pmololg assuming the left-hand side is true
and showing that this implies the right-hand side.

(i): This would prove the statemert’y Q(y)) = (3= P(x)). This is theconverseof the origi-
nal statement which is not logically equivalent to the or@istatement.

(ii): This is a proof bycontradiction It approaches the proof by assuming that the negation of the
statement is true. The negation of the statement is

-[(Fz P(z)) = (Vy Q)] = —[~(3z P(z)) V (Vy Q(y))]
= [V =P(z)) vV (Vy Q(y))]
= —(Vz =P(z)) A (VY Qy))
= (Jz P(z)) A (Jy —Q(y)

_

(iv): This would prove the statement

S[(Va P(2)) A (Vy —Q(y))] = —(Va P(z)) v ~(Vy =Q(y))
~(Vz P(z)) v By Qy))
= (Va2 P(z)) = (Fy Q)

which is not logically equivalent to the original statement

)V
)V

A number of people had some trouble with one or more partsi®fotioblem. Some people reduced
incorrectly. It was not necessary to show your work for trastp



(c) The stable marriage produced by the algorithm is (1L BEY); (3,A), (4,D). 4pts

Almost all people got this question right.

(d) We use the extended-gcd algorithm: 6pts

e-gcd(743, 10)
e-gcd( 10, 3)
e-gcd(3,1)
e-gcd(1, 0)
return (1,1, 0)
return (1,0, 1)
return (1,1,-3)
return (1, -3,223)

Since the gcd of 743 and 10 is 1, we know that 10 has a multiplecanverse modulo 743. We
know from the return values that = (—3)(743) + (223)(10). Modulo 743, this is equivalent to
1 = (223)(10), telling us that 223 is the multiplicative inverse of 10 mudd43.

Most people got this question right. A few people had trowhid the calls or return values of
extended-gcd. A few people had no problem with the calls ibubat know how to use the results
to find the inverse.

2. ATiling Problem

(a) Clearly there is only one way to tile2ax 1 board, namely with a singlB-tile; hencel; = 1. A2 x 2 2pts
board can be tiled in exactly three ways: with thdiles, twoB-tiles, or twoC-tiles. Hencel; = 3.

Virtually everybody got this right.

(b) Consider any tiling configuration ofax n board forn > 3. We identify three cases, according tdpts
whether the last column of this tiling is covered by d@le, or by (part of) aC-tile or two A-tiles. If
we remove the tile or tiles covering this last column, we afewith either & x (n — 1) configuration
(in the case of th@&-tile), or a2 x (n — 2) configuration (in the other two cases). Thus ev&ry n
configuration is uniquely obtained by addin@dile to a2 x (n — 1) configuration, or by adding two
A-tiles or oneC-tile to a2 x (n — 2) configuration. Thus we havg, = T,,_1 + 2T, _s.

Many people got confused by this part; obviously, since tievar was given, it was possible to come
up with a completely bogus explanation of it! The most comenm was to try to extend 8 x (n—1)
and/or a2 x (n — 2) configuration to & x n configuration; the problem with this is that it is hard to
convince the reader that you are really counting e&ch n configuration exactly once, though some
students were able to argue this convincingly. (Notice Hoavabove argument starts from tBex n
configuration, splits it into cases, and works back down tdmaller configurations, which is much
easier.) There were many other arguments, based on slidésgaround, adding tiles at the beginning
and at the end (and even in the middle) etc., all of which rdiise point.

(c) Goal Prove by induction om that7;, = % Opts

Base casesi = 1 andn = 2): Settingn = 1 in the formula givesszr%l)1 = % = 1, which is
indeed equal ta by part (a). Setting = 2 givesZ==1° — 81 — 3 which is indeed equal t,
by part (a).

Induction hypothesisFor an arbitraryn > 3, assume thdf;, =

Wfor1§k<n.




Induction stepWe need to prove that, = 2+U" we have:
Tw = Tha+2Th2 [by part (b)]
. 2n+(_1)n71 2n71+(_1)n72 . . . . .
= 3 +2- 3 [by induction hypothesis fok = n — 1 andk = n — 2]

% (2n Lom 4 (_1)n—1 + 2(_1)n—2)
= $ (2" + (-1)"(-1+2))
% (2n+1 + (_l)n)

This completes the proof by (strong) induction.

Most people got this part more or less right, but few peopleigcompletely right. Common errors
were the following:

— Many people forgot the second base case=(2); note that this is essential because we can only
start using the relation in part (b) once > 3. So, to prove the formula fdfs, we needboth Ty
andTs.

— Even more people did not write down the induction hypothesigectly. Note that we must use
stronginduction here, since to prove the formula f65 we need not only},_; but alsoT;, .
So it is not enough just to assume the formulafpr,. [Many people said that their induction
hypothesis is that the formula is true “for all > 17; this is nonsense as it is exactly what we are
trying to prove. What those people presumably meant washiegbrmula is true “for somer”,
which is really just like assuming it for one valuera]l Many people also seemed to think that
T, = T,_1 + 2T,,_5 is part of the induction hypothesis; it is not — it is a fact tlyau proved in
part (b) and that you use in order to prove the induction stgsuming the induction hypothesis.

— When proving the induction step, many people did not clestdye where they were using the
induction hypothesis (see the second line of the derivatimve). This shouldlwaysbe stated
in any induction proof.

3. Modular Arithmetic

(i) True. ((a + b)® = a® + b mod 3) 3pts

(ii)

(iii)

To prove this, first notice that + b)® = a® + 3a2b + 3ab? + b3. Also we have thaBa?b + 3ab* =
0 mod 3 because each term is a multiple of 3. Hence, taking the reteniof the division by3 on
both sides ofa + b)® = a® + 3a?b + 3ab* + b, we obtain

(a+b)3 =a+0+b* mod 3 = a® + b® mod 3.

False.((a + b)* # a* + b* mod 4 in general) 3pts

A counterexample is obtained by settiag= 1, b = 1. Inthiscasex? + v* = 14 + 1?1 =1+ 1 =
2 mod 4. On the other handga + b)* = (1 + 1)* = 2% = 16 = 0 mod 4.

Some people took thecomplete approach that consists of first noticing th@t + b)* = a* + 4a3b +
6a2b® + 4ab® + b*. Then using the same idea as in part (b), one can get rid ofttmestta®b and4ab?,
since they aré) mod 4. These people then said that the remaining faé@tb? does not disappear.
However, to complete the argument one needs to give a spamifiterexample (i.e., values ferb so
that6a2b? # 0 mod 4.) An example of such valuesds= 1, b = —1, as above. Many other examples
are possible.

True. ((a + b)® = a® + b® mod 5) 3pts
This can be shown using the same argument as in part (a) nbtise thatsa*b + 10a®b? + 10a2b3 +
5ab* = 0 mod 5 because each term is a multiple of 5. Now using the formulddor b)>, we have

(a+b)°=da°+0+b°mod 5 =a® + b° mod 5.



4. Stable Marriage

(@)

(b)

()

True. If we run the traditional propose and reject algorithm, oa filnst day, M will propose toW  4pts
(sinceW is at the top ofM'’s preference list) and?” will say “maybe” sinceM is at the top her
preference list. In the subsequent dayswill keep proposing tdl” andWW will keep saying “maybe”

to M and rejecting offers from other men since she prefdrso all other men. Thud/ and W will
eventually be paired up upon termination of the algorithrimc& we know that the algorithm always
terminates with astable pairing, we know there must exist a stable pairing in whidhis paired

with .

The most common mistake was to prove by contradiction thastale pairingjf it exists, must have
M paired withT¥. The missing point here is to say that a stable pairing alwexists!

False.This is proved by giving a counter example. The common examipkn by many students wagpts
the following stable marriage instance with two men and wiome

Man || Women Woman || Men
1 ||A|B A 1]2
A| B B 1]2

The pairing{(A, 1)(B,2)} is stable, and has manand womanB both at the bottom of their corre-
sponding preference lists.

Almost everybody got this part right.

True. Since this is amexistentialstatement, to prove it it is sufficient to give an example Hadisfies 4pts
it.

Consider the following example with two men and two women:

Man || Women Woman Men
1 A| B A 1
Bl A B 211

For this example, the pairin§(A, 2), (B,1)} is unstable, and every unmatched pair (which in this
example meanéA, 1) and(B, 2)) is a rogue couple.

More generally, we could take an example for arip which manl and woman4 put each other at the
bottom of each other’s preference lists, similarly for n2aand womanB, for man 3 and womang’,
and so on. Then in the unstable pairitig A), (2, B). (3,C),... everybody is paired with their
least-favorite person, so every unmatched pair (€lgB), (2, C) etc.) is a rogue couple.

Some students apparently misunderstood this questiomesoended up trying to show the wrong
property.



