
CS70 Discrete Mathematics for Computer Science, Fall 2007

Midterm 1 Solutions

Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature,
and sometimes contain more explanation (occasionally muchmore) than an ideal solution. Also, bear in
mind that there may be more than one correct solution. The maximum total number of points available is 60.

1. Quick Questions

(a) The truth tables are as follows: 6pts

P Q P⇒ Q Q⇒ P P⇔ Q
true true true true true
true false false true false
false true true false false
false false true true true

Almost all people got this question right. The most common mistake was in the table forP ⇔ Q.

(b) (i) and (iii) are valid strategies. (ii) and (iv) are invalid strategies. Although they were not required,8pts
here are explanations for these answers:

The original statement is(∃x P (x)) ⇒ (∀y Q(y)).

(i): The contrapositiveis (∃y ¬Q(y)) ⇒ (∀x ¬P (x)). The contrapositive is logically equivalent
to the original statement. Thus, we can approach this problem by assuming the left-hand side is true
and showing that this implies the right-hand side.

(ii): This would prove the statement(∀y Q(y)) ⇒ (∃x P (x)). This is theconverseof the origi-
nal statement which is not logically equivalent to the original statement.

(iii): This is a proof bycontradiction. It approaches the proof by assuming that the negation of the
statement is true. The negation of the statement is

¬[(∃x P (x)) ⇒ (∀y Q(y))] ≡ ¬[¬(∃x P (x)) ∨ (∀y Q(y))]

≡ ¬[(∀x ¬P (x)) ∨ (∀y Q(y))]

≡ ¬(∀x ¬P (x)) ∧ ¬(∀y Q(y))

≡ (∃x P (x)) ∧ (∃y ¬Q(y))

(iv): This would prove the statement

¬[(∀x P (x)) ∧ (∀y ¬Q(y))] ≡ ¬(∀x P (x)) ∨ ¬(∀y ¬Q(y))

≡ ¬(∀x P (x)) ∨ (∃y Q(y))

≡ (∀x P (x)) ⇒ (∃y Q(y))

which is not logically equivalent to the original statement.

A number of people had some trouble with one or more parts of this problem. Some people reduced
incorrectly. It was not necessary to show your work for this part.



(c) The stable marriage produced by the algorithm is (1,B), (2,C), (3,A), (4,D). 4pts

Almost all people got this question right.

(d) We use the extended-gcd algorithm: 6pts

e-gcd(743,10)
e-gcd(10,3)
e-gcd(3,1)
e-gcd(1,0)
return (1,1,0)

return (1,0,1)
return (1,1,-3)

return (1,-3,223)

Since the gcd of 743 and 10 is 1, we know that 10 has a multiplicative inverse modulo 743. We
know from the return values that1 = (−3)(743) + (223)(10). Modulo 743, this is equivalent to
1 = (223)(10), telling us that 223 is the multiplicative inverse of 10 modulo 743.

Most people got this question right. A few people had troublewith the calls or return values of
extended-gcd. A few people had no problem with the calls but did not know how to use the results
to find the inverse.

2. A Tiling Problem

(a) Clearly there is only one way to tile a2× 1 board, namely with a singleB-tile; henceT1 = 1. A 2× 2 2pts
board can be tiled in exactly three ways: with twoA-tiles, twoB-tiles, or twoC-tiles. HenceT2 = 3.

Virtually everybody got this right.

(b) Consider any tiling configuration of a2 × n board forn ≥ 3. We identify three cases, according to4pts
whether the last column of this tiling is covered by oneB-tile, or by (part of) aC-tile or twoA-tiles. If
we remove the tile or tiles covering this last column, we are left with either a2× (n− 1) configuration
(in the case of theB-tile), or a2 × (n − 2) configuration (in the other two cases). Thus every2 × n

configuration is uniquely obtained by adding aB-tile to a2× (n− 1) configuration, or by adding two
A-tiles or oneC-tile to a2 × (n − 2) configuration. Thus we haveTn = Tn−1 + 2Tn−2.

Many people got confused by this part; obviously, since the answer was given, it was possible to come
up with a completely bogus explanation of it! The most commonerror was to try to extend a2×(n−1)
and/or a2 × (n − 2) configuration to a2 × n configuration; the problem with this is that it is hard to
convince the reader that you are really counting each2 × n configuration exactly once, though some
students were able to argue this convincingly. (Notice how the above argument starts from the2 × n

configuration, splits it into cases, and works back down to the smaller configurations, which is much
easier.) There were many other arguments, based on sliding tiles around, adding tiles at the beginning
and at the end (and even in the middle) etc., all of which missed the point.

(c) Goal: Prove by induction onn thatTn = 2n+1+(−1)n

3 9pts

Base cases (n = 1 andn = 2): Settingn = 1 in the formula gives2
1+1+(−1)1

3 = 4−1
3 = 1, which is

indeed equal toT1 by part (a). Settingn = 2 gives22+1+(−1)2

3 = 8+1
3 = 3, which is indeed equal toT2

by part (a).

Induction hypothesis: For an arbitraryn ≥ 3, assume thatTk = 2k+1+(−1)k

3 for 1 ≤ k < n.



Induction step: We need to prove thatTn = 2n+1+(−1)n

3 . We have:

Tn = Tn−1 + 2Tn−2 [by part (b)]

= 2n+(−1)n−1

3 + 2 · 2n−1+(−1)n−2

3 [by induction hypothesis fork = n − 1 andk = n − 2]

= 1
3

(

2n + 2n + (−1)n−1 + 2(−1)n−2
)

= 1
3

(

2n+1 + (−1)n(−1 + 2)
)

= 1
3

(

2n+1 + (−1)n
)

.

This completes the proof by (strong) induction.

Most people got this part more or less right, but few people got it completely right. Common errors
were the following:

– Many people forgot the second base case (n = 2); note that this is essential because we can only
start using the relation in part (b) oncen ≥ 3. So, to prove the formula forT3, we needbothT1

andT2.

– Even more people did not write down the induction hypothesiscorrectly. Note that we must use
strong induction here, since to prove the formula forTn we need not onlyTn−1 but alsoTn−2.
So it is not enough just to assume the formula forTn=1. [Many people said that their induction
hypothesis is that the formula is true “for alln ≥ 1”; this is nonsense as it is exactly what we are
trying to prove. What those people presumably meant was thatthe formula is true “for somen”,
which is really just like assuming it for one value ofn.] Many people also seemed to think that
Tn = Tn−1 + 2Tn−2 is part of the induction hypothesis; it is not – it is a fact that you proved in
part (b) and that you use in order to prove the induction step,assuming the induction hypothesis.

– When proving the induction step, many people did not clearlystate where they were using the
induction hypothesis (see the second line of the derivationabove). This shouldalwaysbe stated
in any induction proof.

3. Modular Arithmetic

(i) True. ((a + b)3 = a3 + b3 mod 3) 3pts

To prove this, first notice that(a + b)3 = a3 + 3a2b + 3ab2 + b3. Also we have that3a2b + 3ab2 =
0 mod 3 because each term is a multiple of 3. Hence, taking the remainder of the division by3 on
both sides of(a + b)3 = a3 + 3a2b + 3ab2 + b3, we obtain

(a + b)3 = a3 + 0 + b3 mod 3 = a3 + b3 mod 3.

(ii) False.((a + b)4 6= a4 + b4 mod 4 in general) 3pts

A counterexample is obtained by settinga = 1, b = 1. In this casea4 + b4 = 14 + 14 = 1 + 1 =
2 mod 4. On the other hand,(a + b)4 = (1 + 1)4 = 24 = 16 = 0 mod 4.

Some people took theincomplete approach that consists of first noticing that(a + b)4 = a4 + 4a3b +
6a2b2 +4ab3 + b4. Then using the same idea as in part (b), one can get rid of the terms4a3b and4ab3,
since they are0 mod 4. These people then said that the remaining factor6a2b2 does not disappear.
However, to complete the argument one needs to give a specificcounterexample (i.e., values fora, b so
that6a2b2 6= 0 mod 4.) An example of such values isa = 1, b = −1, as above. Many other examples
are possible.

(iii) True. ((a + b)5 = a5 + b5 mod 5) 3pts

This can be shown using the same argument as in part (a). Firstnotice that5a4b + 10a3b2 + 10a2b3 +
5ab4 = 0 mod 5 because each term is a multiple of 5. Now using the formula for(a + b)5, we have

(a + b)5 = a5 + 0 + b5 mod 5 = a5 + b5 mod 5.



4. Stable Marriage

(a) True. If we run the traditional propose and reject algorithm, on the first day,M will propose toW 4pts
(sinceW is at the top ofM ’s preference list) andW will say “maybe” sinceM is at the top her
preference list. In the subsequent days,M will keep proposing toW andW will keep saying “maybe”
to M and rejecting offers from other men since she prefersM to all other men. ThusM andW will
eventually be paired up upon termination of the algorithm. Since we know that the algorithm always
terminates with astablepairing, we know there must exist a stable pairing in whichM is paired
with W .

The most common mistake was to prove by contradiction that any stable pairing,if it exists, must have
M paired withW . The missing point here is to say that a stable pairing alwaysexists!

(b) False.This is proved by giving a counter example. The common example given by many students was4pts
the following stable marriage instance with two men and women:

Man Women

1 A B

2 A B

Woman Men

A 1 2

B 1 2

The pairing{(A, 1)(B, 2)} is stable, and has man2 and womanB both at the bottom of their corre-
sponding preference lists.

Almost everybody got this part right.

(c) True. Since this is anexistentialstatement, to prove it it is sufficient to give an example thatsatisfies 4pts
it.

Consider the following example with two men and two women:

Man Women

1 A B

2 B A

Woman Men

A 1 2

B 2 1

For this example, the pairing{(A, 2), (B, 1)} is unstable, and every unmatched pair (which in this
example means(A, 1) and(B, 2)) is a rogue couple.

More generally, we could take an example for anyn in which man1 and womanA put each other at the
bottom of each other’s preference lists, similarly for man2 and womanB, for man 3 and womanC,
and so on. Then in the unstable pairing(1, A), (2, B). (3, C), . . . everybody is paired with their
least-favorite person, so every unmatched pair (e.g.,(1, B), (2, C) etc.) is a rogue couple.

Some students apparently misunderstood this question, so they ended up trying to show the wrong
property.


