Problem 1. [True or false] (30 points)
Circle TRUE or FALSE. There is no need to justify your answers on this problem.

a. TRUE or FALSE: If the implication $P \rightarrow Q$ is true, then $Q \rightarrow P$.

b. TRUE or FALSE: If A or B is true, and B is true, then A must be true.

c. TRUE or FALSE: $\text{gcd}(n+1, 2n+1) = 1$.

d. TRUE or FALSE: For all $n > 1$, $2^n - 1$ is prime.

e. TRUE or FALSE: For all odd n, $\text{gcd}(n, n-2) = 1$.

f. TRUE or FALSE: For all a, m, $a^{m-1} = 1 \mod p$.

g. TRUE or FALSE: For all $a, m = pq$, where p and q are prime, $a^{(p-1)(q-1)} = 1 \mod m$.

h. TRUE or FALSE: For all $a, m = pq$, where $\text{gcd}(a, m) = 1$ and p and q are prime, $a^{(p-1)(q-1)} = 1 \mod m$.

i. TRUE or FALSE: 5 has an inverse mod 12?

j. TRUE or FALSE: The complete graph on n nodes is the graph where every pair of nodes is an edge. The complete graph on n nodes is Eulerian for n odd.

Problem 2. [Proof by Induction] (15 points)
Prove by induction that 9 divides $n^3 + (n+1)^3 + (n+2)^3$ for all $n \in \mathbb{N}$.

Problem 3. [Graphs] (5 points)
Prove that the complete graph on n nodes is Hamiltonian, for $n \geq 3$.

Problem 4. [RSA] (20 points)
1. Say Bob is generating an RSA pair from \(p = 5 \) and \(q = 7 \). Say he chooses \(e = 3 \). What is the problem?

2. Say he chooses \(e = 5 \), what would the decryption key \(d \) be?

3. Encrypt the message 6.

4. Why is encrypting 5 and bad idea?

Problem 5. [Polynomials] (15 points)

1. Given a polynomial of degree at most \(n - 1 \) and \(n \) points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \) that all fall on a degree 1 polynomial, must the polynomial be of at most degree 1? Argue your answer is correct. (Hint: recall that a degree \(d \) polynomial can only have \(d \) zeroes. And adding two polynomials results in a polynomial of degree at most the maximum of the two.)

2. Find the degree 2 polynomial over \(\mathbb{Z}_5 \), that passes through \((0,1), (1,2), (2,2)\).

Problem 6. [Berlekamp-Welsh] (15 points)

Consider a message \(m_1, \ldots, m_n \) where each \(m_i \) is a field element. Consider the degree \(n - 1 \) polynomial \(P \) where \(P(i) = m_i \). Recall that knowing any \(n \) correct points on the polynomial allow us to reconstruct the polynomial.

1. Consider a set of \(n + 2k \) points where at least \(n + k \) of them lie on \(P(x) \). Argue that the only degree \(n - 1 \) polynomial that hits at least \(n + k \) of these points is \(P(x) \).

2. Consider a transmission of the polynomial encoding, where errors occur at points 0, 1, and 2. What is the definition of the error polynomial defined in our lecture on the Berlekamp-Welsh lecture?