
CS 61CL (Clancy/Culler) Solutions for exam 2
Fall 2008

 A

Problem 1 (10 points)

Parts a and b involved isolating the Rs field of an instruction. Here are solutions.

 isolating Rs

C // two-shift version
return (inst << 6) >> 27;

// shift-and-mask version
return (inst >> 21) & 0x1F;

assembly
language

two-shift version
sll $v0,$a0,6
srl $v0,$v0,27
jr $ra

shift-and-mask version
srl $v0,$a0,21
andi $v0,$v0,0x1F

More of you provided the two-shift version, though (we think) the shift-and-mask version
is somewhat simpler.

Part c involved a C program segment to convert a lower-case letter to upper-case. You
were to translate the C code to assembly language. Here's a solution.

 li $t1,'a'
 li $t2,'z'
 blt $t0,$t1,ok # ch < 'a' if branch
 bgt $t0,$t2,ok # ch > 'z' if branch
 sub $t0,$t0,$t1 # compute ch – 'a'
 addi $t0,$t0,'A' # compute ch – 'a' + 'A'
ok:

Finally, part d involved translating a C switch to assembly language. Here's a solution.
 li $t1,'y'
 bne $t0,$t1,checkn
 li $v0,1
 j switchend
checkn:
 li $t1,'n'
 bne $t0,$t1,default
 li $v0,0
 j switchend
default:
 li $v0,-1
switchend:

Problem 2
In this problem, you were to translate machine language instructions to assembly lan-
guage. The instructions were 8D28FFF8 and 01022020.
We start by expressing each instruction as binary, in order to access the instruction's bit
fields.

 2

hexadecimal binary
8D28FFF8 100011 01001 01000 1111111111111000

01022020 000000 01000 00010 00100 00000 100000

We observe from the op codes that 8D28FFF8 is lw and the other is an R-format instruc-
tions. The function fields of the latter indicate that each is an add.

In an assembly language lw, the Rt field is the first operand. Rt is the second operand in
machine language. The offset for each is –8. (Note that the offset is in bytes, unlike the
operand in a branch or jump, which is a word offset or address.)

The resulting instruction is
lw $8,-8($9)

In the assembly language add instruction, the operands are Rd, Rs, and Rt. In machine
language, they appear in the order Rs, Rt, Rd. Thus 01022020 translates to

add $4,$8,$2

Problem 3
This problem involved translation of truth table values to Boolean expressions. Answers
are

U0 = N2 + N1 + N0

U4 = N2 N1 N0

U2 = !N2 N1 N0 + N2 !N1 !N0 + N2 !N1 N0 (sum of products)

 = N2 + N1 N0 (simplified)

Each part was worth 1 point. You didn't need to simplify U4 or U0, and you didn't need to
simplify U2 all the way. Some of you provided a sum-of-products expression for U0,
which was maximally unsimplified!

Problem 4
In this problem, you were to provide a simplified Boolean expression representing a
given circuit.
A good approach is to make a truth table:

 S 0 1
A
0 0 0
1 0 1

Simplifying, we find that the output X = S A.

Problem 5

Here, you had to supply arguments to an assembly language version of snprintf. This
problem was the same on both versions. (We announced at the exam that the format
string should be changed to "%s%d %c", i.e. with no blank after the "%s".) Here is a so-
lution.

 3

argument 4 (in $a3): the string "N = "
la $a3,chars+5

argument 5 (on the stack): the integer 112
lb $t0,more
sw $t0,0($sp)

argument 6 (on the stack): the character semicolon
lb $t0,more+5
sw $t0,4($sp)

Problem 6
In this problem, you were to give the C equivalent of assembly language accesses to a
data structure. The data structure is pictured below.

$s0

$s0 corresponds to a struct node ** in C.
The assembly language segments and their C translation appears below.

assembly language C
addi $t0,$s0,4
sw $0,0($t0)

lists[1] = 0;

addi points $t0 at lists[1]; sw zeroes that element.
lw $t0,8($s0)
sw $t0,24($s0)

lists[6] = lists[2];

lw gets lists[2]; sw stores it into lists[6].
lw $t0,20($s0)
lw $t0,20($t0)
sw $0,20($t0)

lists[5]->next->next = 0;

lw gets lists[5]; the next lw gets lists[5]->next;
sw zeroes lists[5]->next->next.

 4

Problem 7
Part a involved converting two values from decimal to their IEEE floating point represen-
tations. Here are solutions.

decimal IEEE floating point
4.5 The sign is 0. The exponent is 2, so the biased exponent is 129. The frac-

tion is (1).001, the result of shifting 100.1 two places to the right and
then hiding the hidden bit.

The result is 0 10000001 001000 … = 0x40900000.
–0.625 The sign is 1. The exponent is –1, so the biased exponent is 126. The

fraction is (1).010, the result of shifting .101 left one place and then hid-
ing the hidden bit.

The result is 1 01111110 010 … = 0xBF200000.

Adding the two values in part b involved increasing the exponent and shifting the fraction
of the smaller value to equalize exponents, adding the values, then renormalizing as
shown below.

Compute 1.001 * 22 – 1.01 * 2–1.
Shift the fraction of the second value three
places to equalize exponents:
= 1.00100 * 22 – .00101 * 22 = .11111 * 22

Renormalize:
= 1.1111 * 21 = 3.875

Problem 8
This problem involved exploring the consequences of adding a bit to the exponent in the
IEEE floating point representation and simultaneously removing a bit from the fraction.
In particular, you were to decide if the smallest x for which x = x+1 would decrease, in-
crease, or stay the same. This problem was the same on both versions.

The smallest x for which x = x+1 would decrease from 224 to 223. The problem arises
when the exponents of the summands are equalized; the fraction for 1.0 must be shifted
right as many places as the exponent is increased to match that of the bigger value. Shift-
ing the hidden bit 24 places in IEEE format essentially zeroes it. If the number of fraction
bits were reduced by 1, we only need a shift of 23 places to render 1.0 meaningless.

 5

Problem 9
In this problem, you were to translate a C function (similar to the code in problem 1) to
assembly language. Here's a solution.

answer:
 addi $sp,$sp,-4
 sw $ra,0($sp)
 move $a1,$a0
 la $a0,format
 jal printf
 jal getchar
 li $t0,'y'
 bne $t0,$v0,return0
 li $v0,1
 j return
return0:
 li $v0,0
return:
 lw $ra,0($sp)
 addi $sp,$sp,4
 jr $ra

 .data
format:
 .asciiz "%s"

We told you at the exam not to use syscall. Some of you did it anyway. To avoid deduc-
tions, you had to use it correctly: "print string" requires a 4 in $v0 and the address of the
first character of the string to print in $a0; "get character" requires a 12 in $v0, and re-
turns the character in $a0 (contrary to MIPS register use conventions).

Problem 10
Part a was to identify which instructions in the given code would produce entries in the
relocation table. The code appears below, with relevant instructions underlined and bold-
faced.

Assembly language, .text section Relocatable binary, .text section
Argument is the number of bytes
the caller wants to allocate.
Address of the requested storage
is returned, or 0 if request
can't be satisfied.
stackalloc:
 lw $v0,nextfree

 add $t0,$a0,$v0
 la $t1,nextfree

 ble $t0,$t1,ok

Address

00
04
08
0c
10
14

Contents

3c010000
8c220064
00824020
3c010000
34290064
0128082a

 6

 add $v0,$0,$0
 j return
ok:
 sw $t0,nextfree

return:
 jr $ra

18
1c
20

24
28

2c

10200003
00001020
0800000b

3c010000
ac280064

03e00008

Assembly language, .data section Relocatable binary, .data section
stg:
 .space 100

nextfree:
 .word stg

00
…
60

64

00000000
 ...
00000000

00000000

The jr does not produce a relocation entry, since the relevant absolute address will be in a
register rather than in the instruction itself.

Note that some of the assembly language instructions—specifically, lw, la, and sw—
expand to two machine language instructions, and both instructions in the pair will con-
tribute relocation entries.
Part b was to do the relocation by adjusting absolute addresses in the machine language
instructions. The following adjustments are necessary:

• Change the right half of each lui—at locations 00, 0c, and 24—to 1001.

• Change the j instruction at location 20 to 0x0810000b.

• Change the word at location 64 to 0x10010000.

The lw at location 04, the ori at location 0c, and the sw at location 28 would merely get
changed to their existing values in the relocation process.

