
CS 61CL (Clancy/Culler) Exam 2
Fall 2008

 A

Read and fill in this page now.
Do NOT turn the page until you are told to do so.

Your name: __

Your login name: __

Your lab section day and time: __

Your lab t.a.: __

Name of the closest person on your __
right (possibly "aisle" or "wall")

Name of the closest person on your __
left (possibly "aisle" or "wall")

Problem 0 Total: /60

Problem 1 Problem 5

 Problem 6

Problem 2 Problem 7

Problem 3 Problem 8

 Problem 9

Problem 4 Problem 10

This is an open-book test. You have approximately two hours to complete it. You may
consult any books, notes, or other paper-based inanimate objects available to you. You
may not use any electronic devices.

To avoid confusion, read the problems carefully. If you find it hard to understand a
problem, ask us to explain it. If you have a question during the test, please come to the
front or the side of the room to ask it.
This exam comprises 15% of the points on which your final grade will be based. Partial
credit may be given for wrong answers. Your exam should contain eleven problems
(numbered 0 through 10) on thirteen pages. Please write your answers in the spaces
provided in the test; in particular, we will not grade anything on the back of an exam page
unless we are clearly told on the front of the page to look there.

Some students are taking this exam late. Please do not talk to them, mail them
information, or post anything about the exam to news groups or discussion forums until
after Thursday.
Relax—this exam is not worth having heart failure about.

 Login: cs61cl-_____

 2

Problem 0 (2 points)
Put your login name on each page. Also make sure you have provided the information
requested on the first page.
Problem 1 (10 points)
Part a

Complete the C function below, intended to return the Rs field of its MIPS machine
language instruction argument.

unsigned int getRs (unsigned int inst) {

Part b
Write the same function in MIPS assembly language. Follow all relevant conventions for
register use.

 Login: cs61cl-_____

 3

Problem 1, continued
Part c

Translate the following C code to MIPS assembly language. Assume that ch is stored in
register $t0. You may use other $t registers.

if (ch >= 'a' && ch <= 'z') {
 ch = ch – 'a' + 'A';
}

Part d

Do the same for the following. Assume that ch is stored in $t0 and answer is to be
stored in $v0. You may use other $t registers.

switch (ch) {
 case 'y':
 answer = 1;
 break;
 case 'n':
 answer = 0;
 break;
 default:
 answer = -1;
 break;
}

 Login: cs61cl-_____

 4

Problem 2 (4 points)
For each MIPS machine language instruction below, circle its assembly language
counterpart.

8D28FFF8

lw $9,-32($8)

lw $9,-8($8)

lw $9,-2($8)

lw $8,-32($9)

lw $8,-8($9)

lw $8,-2($9)

subu $9,$8,$31

lw $2,-32($8)

lw $2,-8($8)

lw $2,-2($8)

lw $8,-32($2)

lw $8,-8($2)

lw $8,-2($2)

subu $31,$9,$8

01022020 addi $8,$2,8224

addi $2,$8,8224

lb $8,8224($2)

lb $2,8224($8)

add $8,$2,$4

add $4,$8,$2

add $2,$4,$8

add $2,$2,$0

 Login: cs61cl-_____

 5

Problem 3 (4 points)
Most people count on their hands in unary, holding up as many fingers as the value they
want to represent. Consider a Boolean circuit that converts a 3-bit binary number N in
[0,5] to a 5-bit unary number U, with N 1 bits padded on the left by 5–N 0 bits. (For
inputs larger than 5, it doesn't matter what it does.) Here is its truth table.

N2 N1 N0 U4 U3 U2 U1 U0

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 1 1 1
1 0 1 1 1 1 1 1

Part a

Give a circuit that, given N2, N1, and N0 as inputs, outputs U0.

Part b

Give a circuit that, given N2, N1, and N0 as inputs, outputs U4.

Part c

Give a sum-of-products expression for U2 in terms of N2, N1, and N0.

Part d
Simplify your answer to part c.

 Login: cs61cl-_____

 6

Problem 4 (4 points)
The circuit below consists of two multiplexors, some of whose inputs are "hard-wired" to
1 or 0. Give a simplified boolean expression for the output X in terms of the other inputs
A and S. Show your work.

1

0

S

A

0

X

0

M

u

x

1

0

M

u

x

1

 Login: cs61cl-_____

 7

Problem 5 (6 points)

This problem involves setting up the stack for a call to snprintf.
Suppose that the data segment contains the following declarations:

chars: .asciiz "ABCDMN = "

more: .asciiz "p112A;" # 'p' has ASCII code 112

format: .asciiz "%s %d %c"

buffer: .space 200

Given below is the first few instructions of a call to snprintf, similar to what was
provided in the file snprintf.s. Complete the sequence of assembly language statements
that sets up a call to snprintf. Upon return from snprintf, the memory labeled by buffer
should contain the string

"N = 112 ;"

Your code must use the format string and buffer specified above. Every argument you
supply to snprintf should be retrieved from the data segment (the areas labeled by chars
and more) via lw, la, or lb instructions.

_start:
 addi $sp,$sp,-8 # reserve stack space for arguments
 la $a0,buffer # arg 0 <- buffer
 li $a1,200 # arg 1 <- size of buffer
 la $a2,format # arg 2 <- format

You fill this in.

 jal snprintf

 Login: cs61cl-_____

 8

Problem 6 (5 points)
Consider an assembly language translation of the following declarations.

struct node {
 int values[5];
 struct node * next;
};
struct node * lists[10];

Suppose that $s0 contains a pointer to lists[0].
Each assembly language segment shown below corresponds to a single C assignment
statement. Supply that statement. Hint: draw diagrams.

addi $t0,$s0,4
sw $0,0($t0)

lw $t0,8($s0)
sw $t0,24($s0)

lw $t0,20($s0)
lw $t0,20($t0)
sw $0,20($t0)

 Login: cs61cl-_____

 9

Problem 7 (6 points)
Part a
Provide (in hexadecimal) the IEEE floating point representation of 4.5 and –0.625, and
indicate how you found them.

decimal IEEE floating point
4.5

–0.625

Part b
Show in detail the steps involved in adding these two values.

 Login: cs61cl-_____

 10

Problem 8 (4 points)

In lab, you found the smallest value x for which x = x+1. Suppose we increased the
number of bits in the exponent by 1 and corresponding reduced the number of bits in the
fraction by 1. Would the smallest x for which x = x+1 increase, stay the same, or
decrease as a result of this change in format? Briefly defend your choice. If the desired x
changes, indicate by how much.

 Login: cs61cl-_____

 11

Problem 9 (7 points)
Translate the following C function to MIPS assembly language. Follow all relevant
register conventions.

int answer (char *prompt) {
 char ch;
 printf ("%s", prompt);
 ch = getchar ();
 if (ch == 'y') {
 return 1;
 } else {
 return 0;
 }
}

 Login: cs61cl-_____

 12

Problem 10 (8 points)
The MIPS assembler, when run with the code on the left below as input, produced the
machine code on the right.

Assembly language, .text section Relocatable binary, .text section
Argument is the number of bytes
the caller wants to allocate.
Address of the requested storage
is returned, or 0 if request
can't be satisfied.
stackalloc:
 lw $v0,nextfree

 add $t0,$a0,$v0
 la $t1,nextfree

 ble $t0,$t1,ok

 add $v0,$0,$0
 j return
ok:
 sw $t0,nextfree

return:
 jr $ra

Address

00
04
08
0c
10
14
18
1c
20

24
28

2c

Contents

3c010000
8c220064
00824020
3c010000
34290064
0128082a
10200003
00001020
0800000c

3c010000
ac280064

03e00008

Assembly language, .data section Relocatable binary, .data section
stg:
 .space 100

nextfree:
 .word stg

00
…
60

64

00000000
 ...
00000000

00000000

Part a
In the "Relocatable binary: Contents" column, circle each instruction that contributes an
entry to the relocation table.

 Login: cs61cl-_____

 13

Problem 10, continued
Part b

Here is the code from the previous page. Assume that the .text segment is loaded starting
at location 0x00400000 and the .data segment is loaded starting at 0x10010000. Make
whatever fixes to the .text and .data segments that are necessary to turn relocatable
addresses into absolute addresses.

.text segment .data segment

Address Contents Address Contents

00

04

08

0c

10

14

18

1c

20

24

28

2c

3c010000

8c220064

00824020

3c010000

34290064

0128082a

10200003

00001020

0800000c

3c010000

ac280064

03e00008

00

…

60

64

00000000

 ...

00000000

00000000

