
CS 61C Midterm #2 | July 30th, 1998Your namelogin cs61c{This exam is worth 30 points, or 15% of your total course grade. The exam contains sixsubstantive questions, plus the following:Question 0 (1 point): Fill out this front page correctly and put your name and logincorrectly at the top of each of the following pages.This booklet contains seven numbered pages including the cover page, plus a copy of theback inside cover of Patterson & Henessey. Put all answers on these pages, please; don'thand in stray pieces of paper. This is a closed book exam, calucaltors are allowed.When writing procedures, write straightforward code. Do not try to makeyour program slightly more e�cient at the cost of making it impossible toread and understand.When writing procedures, don't put in error checks. Assume that you will begiven arguments of the correct type and speci�ed format.If you �nd one question especially di�cult, leave it for later; start with the ones you �ndeasier. We will use round to even as our rounding mode to round all fractional points tointeger values.READ AND SIGN THIS:I certify that my answers to this exam are all my ownwork, and that I have not discussed the exam questions oranswers with anyone prior to taking this exam.If I am taking this exam late, I certify that I have notdiscussed the exam questions or answers with anyone whohas knowlegde of the exam.I also certify that I was not kidnapped by evil two headedalien Elvis clones for use in their diabolical experiments.
0 =11 =52 =63 =64 =65 =6total =301

Your name login cs61c{Question 1, Deja Vu all over again (5 points):1 point: Using two's complement, saturating arithmetic, add the following 8 bit numberstogether. 0011010100101111+ 01011011----------011111111 point: Which IEEE rounding mode would you like us to use for dealing with fractionalpoints, in order to maximize your score: round to +1, round to �1, truncate, or roundto even?+1, aka round up.1 point: Why does this not work as a translation of li $rd imm? imm is a 32 bit quantity,high is the upper 16 bits of imm, low is the lower 16 bits of imm:lui $rd highaddiu $rd $rd low # Addiu sign extends the immediate1 point: What is the value of this 32 bit, two's complement number?11111111 11111111 11111111 11110011?-131 point: What registers must be restored to their prexisting values when a function returns,according to the MIPS calling convention?$sp, $s0-7, $fp, $gp. Saying just $sp and the saved registers is su�cient. You can arguefor $ra as well, so that was accepted. 2

Your name login cs61c{Question 2 (6 points):Short questions on performance and I/O.1 point: How many interrupts will be required to read 100 bytes of input, one byte at atime, using polling based I/O?0. Polling does not USE interrupts1 point: How many interrupts will be required to read 100 bytes of input, one byte at atime, using interrupt driven I/O?100, one for each byte1 point: How many interrupts will be required to read 100 bytes of input, using a DMAtransfer?1, when the transfer is complete, or possibly 2, one at at the start, one at the end.1 point: Gill Bate's new operating system, Macro$haft WinBlows 00 requires 10 minutesto start up. 40% of this time is used to detect and remove non Macro$haft programs. Ifthe Department of Justice forces the removal of this portion of the operating system, whatis the best time the modi�ed operating system (the version without the portion whichdetects non Macro$haft programs) requires to boot?It no longer boots without this critical code. Or it takes 6 minutes1 point: Inhell computer corporation claims that their new Multipersonality Extension(MPX instructions) based CPUs perform some operations, those represented by MPXinstructions, up to 10 times faster, but all non MPX instructions are una�ected. Olderprograms do not use MPX instructions. What is the maximum percentage improvementwhich a MPX processor o�ers when running old programs?0% improvement. The old code does not use MPX instructions1 point: A RISC machine has an average CPI of 1.5 and a clock rate of 500 MHz. Howlong will it take to execute a 100,000,000 instruction program?.3 seconds, or 300 ms 3

Your name login cs61c{Question 3 (6 points):Short questions on boolean logic, circuits, computer components, etc.1 points: Which of the following boolean expressions are true?A or 0 = 0, A or 0 = 1, A and~A = 0, A and~A = 1A and~A = 0 is correct.2 points: Give the truth table for the following boolean function and draw a circuit whichimplements it.O = AB or AC or B~CA B C | O------------0 0 0 | 00 0 1 | 00 1 0 | 10 1 1 | 01 0 0 | 01 0 1 | 11 1 0 | 11 1 1 | 12 points: A state machine has 3 states, A, B, and C, and one input I. If the machine is instate A and I is true, it transitions to state B, otherwise it stays in state A. If the machineis in state B and I is true, it transitions to state C, otherwise it transitions to state A. Ifthe machine is in state C it will always stay in state C. Draw the state transition diagramfor this state machine1 point: Which of the following tasks does the ALU perform: Store register value, performarithmetic operations, perform comparisons, load data from memory?Arithmetic operations and comparisons. 4

Your name login cs61c{Question 4 (6 points):Consider this C program de�nition:struct dispatchElement{char *name;int value;int (*fn)(int);};int opcode(int i);int dispatch(struct dispatchElement *table, int operation){return ((table[opcode(operation)].fn)(operation));}Translate the function dispatch into MIPS assembly, using the register calling convention.Hint:, draw the layout for a struct dispatchElement on the back side to make sure youfetch the correct �elds of the structure.dispatch:addi $sp $sp 12 # prologsw $ra 0($sp)sw $s0 4($sp)sw $s1 8($sp)move $s0 $a0 # save tablemove $s1 $a1 # and operationmove $a0 $a1 # Calljal operation # operationli $t0 12 # Each dispatchElement takes 12mul $t0 $t0 $v0 # words, so multiply by 12add $t0 $t0 $s0 # Add offset to tablelw $t0 8($t0) # fn is the 3rd fieldmove $a0 $s1 # Get opjalr $t0 # call fnlw $ra 0($sp) # and returnlw $s0 4($sp)lw $s1 8($sp)addi $sp $sp 12jr $ra 5

Your name login cs61c{Question 5 (6 points):Ben Bitdiddle has written the following faulty interrupt handler. The device in questioncan have interrupts enabled by writing a 1 to the address 0xffff0010, and disabled bywriting a 0 to that address. When this device generates an interrupt, the value 0xf00d isplaced in the cause register (coprocessor0 register $13). No other interrupt will generatethis value for the cause register. He wants to allow other interrupts to proceed whilehis interrupt handler is processing this interrupt, but does not want to receive interruptsfrom the device in question. Only his interrupt handler manipulates the device's interruptenable register, so he doesn't have to worry about someone else reenabling the device'sinterrupt. Unfortunately there are 3 bugs in his code. Identify each bug, correct it in thecode, and explain why each bug is a problem. Code written out as ... is correct. He isallowed to use the stack for storage. His bugs do not invlove his enabling and disablingof interrupts or the manipulation of registers to enable or diable interrupts, but involvenot correctly saving a register, enabling or disabling interrupts at the wrong time or in thewrong order, and using registers at inappropriate times. All comments correctly describethe behavior of the commented code..ktext 0x80000080 # Forces interrupt routine below to# be located at the right spotintrp:1) addi $sp $sp -20 # Get some stack space2) mfc0 $k0 $13 # See what caused the interrupt3) li $k1 0xf00d # If it is not ours, skip on4) bne $k0 $k1 other_interrupt5) sw $t0 0($sp) # Save $t0 and $t16) sw $t1 4($sp)7) mfc0 $k0 $148) sw $k0 8($sp) # Saving exception PC9) mfc0 $k0 $1210) sw $k0 12($sp) # saving status register11) ori $k0 $k0 1 # Set interrupt bit to 1 and relpace12) mtc0 $k0 $12 # which will reenable interrupts13) li $t0 0xffff0010 # Turn off the device14) li $t1 0 # so it doesn't send more15) sw $t1 0($t0) # Interrupts# Continues on next page 6

Your name login cs61c{... # The body of the code is correct20) lw $k0 12($sp) # Load the status and21) mtc0 $k0 $12 # Disable interrupts22) li $t0 0xffff0010 # Reenable the device23) li $t1 1 # so it will send interrupts24) sw $t1 0($t0)25) lw $k0 8($sp) # Restore registers26) lw $t0 0($sp) # And return to $k027) lw $t1 4($sp)28) rfe29) jr $k0other_interrupt: # This code is OK, and will... # return on its ownBug #1 is around line(s)1 and 27. The problem is:forgetting to save and restore $atBug #2 is around line(s)12-15. The problem is:reenabling interrupts before disabling interrupts for the deviceBug #3 is around line(s)20-21. The problem is:using $k0 while interrupts are still enabled. $t0 should be used instead.Bug #4 is around line(s)27. The problem is:Nick forgot to reincrement the stack pointer when he was done7

