CS 61C Midterm #2 — July 30th, 1998

Your name

login cs6lc—

This exam is worth 30 points, or 15% of your total course grade. The exam contains six
substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains seven numbered pages including the cover page, plus a copy of the
back inside cover of Patterson & Henessey. Put all answers on these pages, please; don’t
hand in stray pieces of paper. This is a closed book exam, calucaltors are allowed.

When writing procedures, write straightforward code. Do not try to make
your program slightly more efficient at the cost of making it impossible to
read and understand.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type and specified format.

If you find one question especially difficult, leave it for later; start with the ones you find
easier. We will use round to even as our rounding mode to round all fractional points to
integer values.

READ AND SIGN THIS:
I certify that my answers to this exam are all my own 0
work, and that I have not discussed the exam questions or 2l
answers with anyone prior to taking this exam.)
/5
If T am taking this exam late, I certify that I have not 5
discussed the exam questions or answers with anyone who /6
has knowlegde of the exam.
3 /6
I also certify that I was not kidnapped by evil two headed 4
alien Elvis clones for use in their diabolical experiments. /6
5 /6
total /30

Your name login cs6lc—

Question 1, Deja Vu all over again (5 points):

1 point: Using two’s complement, saturating arithmetic, add the following 8 bit numbers
together.

00110101
00101111
+ 01011011

1 point: Which IEEE rounding mode would you like us to use for dealing with fractional
points, in order to maximize your score: round to 400, round to —oo, truncate, or round
to even?

1 point: Why does this not work as a translation of 11 $rd imm? imm is a 32 bit quantity,
high is the upper 16 bits of imm, low is the lower 16 bits of imm:

lui $rd high
addiu $rd $rd low

1 point: What is the value of this 32 bit, two’s complement number?

11111111 11114111 11111141 111100117

1 point: What registers must be restored to their prexisting values when a function returns,
according to the MIPS calling convention?

Your name login cs6lc—

Question 2 (6 points):
Short questions on performance and 1/0.

1 point: How many interrupts will be required to read 100 bytes of input, one byte at a
time, using polling based 1/07

1 point: How many interrupts will be required to read 100 bytes of input, one byte at a
time, using interrupt driven 1/07

1 point: How many interrupts will be required to read 100 bytes of input, using a DMA
transfer?

1 point: Gill Bate’s new operating system, Macro$haft WinBlows 00 requires 10 minutes
to start up. 40% of this time is used to detect and remove non Macro$haft programs. If
the Department of Justice forces the removal of this portion of the operating system, what
is the best time the modified operating system (the version without the portion which
detects non Macro$haft programs) requires to boot?

1 point: Inhell computer corporation claims that their new Multipersonality Extension
(MPX instructions) based CPUs perform some operations, those represented by MPX
instructions, up to 10 times faster, but all non MPX instructions are unaffected. Older
programs do not use MPX instructions. What is the maximum percentage improvement
which a MPX processor offers when running old programs?

1 point: A RISC machine has an average CPI of 1.5 and a clock rate of 500 MHz. How
long will it take to execute a 100,000,000 instruction program?

Your name login cs6lc—

Question 3 (6 points):
Short questions on boolean logic, circuits, computer components, etc.

1 points: Which of the following boolean expressions are true?
Aor0=0,Aor0=1, Aand A =0, Aand A =1

2 points: Give the truth table for the following boolean function and draw a circuit which
implements it.

O=AB or AC or BTC

2 points: A state machine has 3 states, A, B, and C, and one input I. If the machine is in
state A and I is true, it transitions to state B, otherwise it stays in state A. If the machine
is in state B and I is true, it transitions to state C, otherwise it transitions to state A. If
the machine is in state C it will always stay in state C. Draw the state transition diagram
for this state machine

1 point: Which of the following tasks does the ALU perform: Store register value, perform
arithmetic operations, perform comparisons, load data from memory?

Your name login cs6lc—

Question 4 (6 points):
Consider this C program definition:

struct dispatchElement{
char *name;
int value;
int (*fn) (int);

+;

int opcode(int i);

int dispatch(struct dispatchElement *table, int operation){
return ((tablelopcode(operation)].fn) (operation));
}

Translate the function dispatch into MIPS assembly, using the register calling convention.
Hint:, draw the layout for a struct dispatchElement on the back side to make sure you
fetch the correct fields of the structure.

dispatch:

Your name login cs6lc—

Question 5 (6 points):

Ben Bitdiddle has written the following faulty interrupt handler. The device in question
can have interrupts enabled by writing a 1 to the address 0xff£f£f0010, and disabled by
writing a 0 to that address. When this device generates an interrupt, the value 0x£00d 1s
placed in the cause register (coprocessorQ register $13). No other interrupt will generate
this value for the cause register. He wants to allow other interrupts to proceed while
his interrupt handler is processing this interrupt, but does not want to receive interrupts
from the device in question. Only his interrupt handler manipulates the device’s interrupt
enable register, so he doesn’t have to worry about someone else reenabling the device’s
interrupt. Unfortunately there are 3 bugs in his code. Identify each bug, correct it in the
code, and explain why each bug is a problem. Code written out as ... is correct. He is
allowed to use the stack for storage. His bugs do not invlove his enabling and disabling
of interrupts or the manipulation of registers to enable or diable interrupts, but involve
not correctly saving a register, enabling or disabling interrupts at the wrong time or in the
wrong order, and using registers at inappropriate times. All comments correctly describe
the behavior of the commented code.

.ktext 0x80000080 # Forces interrupt routine below to
be located at the right spot
intrp:
1) addi $sp $sp -20 # Get some stack space

2) mfcO $k0 $13 # See what caused the interrupt
3) 1i $k1 0xf00d # If it is not ours, skip on
4) bne $k0 $k1 other_interrupt

5) sw $t0 0($sp) # Save $t0 and $t1
6) sw $t1 4($sp)

7) mfcO $k0 $14

8) sw $k0 8($sp) # Saving exception PC

9) mfcO $k0 $12

10) sw $k0 12($sp) # saving status register

11) ori $k0 $k0 1 # Set interrupt bit to 1 and relpace
12) mtcO $k0 $12 # which will reenable interrupts

13) 1i $t0 0xffff0010 # Turn off the device
14) 1i $t1 0 # so it doesn’t send more
15) sw $t1 0($t0) # Interrupts

Continues on next page

Your name

20)
21)

22)
23)
24)

25)
26)
27)

28)
29)

login cs6lc—

1w $k0 12($sp)
mtcO $k0 $12

1i $t0 0xffff0010

1i $t1 1
sw $t1 0($t0)

lw $k0 8($sp)
1w $t0 0($sp)
lw $t1 4($sp)

rfe
jr $k0

other_interrupt:

Bug #1 is around line(s)

Bug #2 is around line(s)

Bug #3 is around line(s)

The body of the code is correct

*

Load the status and
Disable interrupts

*

Reenable the device
so it will send interrupts

*

Restore registers
And return to $kO

This code is 0K, and will
return on its own

. The problem is:

. The problem is:

. The problem is:

