CS 61C Midterm #1 July 9th, 1998

Your name

login cs6lc

This exam is worth 30 points, or 15% of your total course grade. The exam contains six
substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages. It is AMAZING the number of
people which got this question wrong!

This booklet contains seven numbered pages including the cover page, plus a copy of the
back inside cover of Patterson & Henessey. Put all answers on these pages, please; don’t
hand in stray pieces of paper. This is a closed book exam, calucaltors are allowed.

‘When writing procedures, write straightforward code. Do not try to make
your program slightly more efficient at the cost of making it impossible to
read and understand.

‘When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type and specified format.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question especially difficult, leave it for later; start with the ones you find
casier. We will use truncate as our rounding mode to round all fractional points to integer
values.

READ AND SIGN THIS:

T certify that my answers to this exam are all my own 0
»xam questions or [IS

answers with anyone prior to taking this exam.

work, and that I have not discussed the

If T am taking this exam late, T certify that I have not 5
discussed the exam questions or answers with anyone who R S
has knowlegde of the exam.

3 s

T also certify that I have never been captured by alien elvis 4
clones for their diabolical experiments. (R S R i
51 s
total /30

Question 1 (5 points):
Counsider the following 32 bit binary value 11111111111111111111111111111110.

Each part is 5/6th of a point, which since we truncate on the rounding, means that you
lose a point for each missed question, with a minimum of 0.

(a) Write this value out in hexadecimal.

Oxfffffffe

(b) decimal, interpreting it as an unsigned value. Write this as the neares power of 2 and
add or subtract the approprate offset. (EG, if you want to write 9, write 2% + 1.)

232 _ 2 Simply 2 less that 232

(¢) decimal, interpreting it as a sign/magnitude value. Write this as the nearest power of 2
and add or subtract the appropriate offset. (EG, if you want to write -9, write —(2% +1).)

—(2%' — 2) Its negative (because of the sign bit).

(d) decimal, interpreting it as a ones complement signed value. Write this as the nearest
power of 2 and add or subtract the appropriate offset.

—1 aka —(2°). Just invert the bits, since it is negative.

(e) decimal, interpreting it as a twos complement signed value. Once again, write this as
the nearset power of 2 and add or subtract the appropriate offset.

—2 aka —(2!) Invert the bits and add 1

(f) What is this value if you interpret it as IEEE single precision floating point? (Remem-
ber, IEEE single precision floating point has an 8 bit exponent with a bias of 127 and a
23 bit significand).

NaN (Exponent is maximum and mantissa is nonzero)

Your name login cs6lc

Question 2 (6 points):

Each part is 1.5 points, which means that 1 right gives 1 point, 2 right gives 3 points, 3
right gives 4 points, and 4 right gives 6 points. When I wrote -1/2 it means you didn’t
lose half a point, you lost have the credit for that question.

(a) Encode the following MIPS instruction in its binary representation: lui $20 0xf00d

001111 00000 10100 1111000000001110

If you get the order of the Rs and Rd fields wrong, you get half credit.

(b) Decode the following binary number as a MIPS instruction and give the equivelent
MIPS assembly language statement:

00000001110100001010000000100000
000000 01110 10000 10100 00000 100000
add $20 $14 $16

Once again, mixed up fields gives half credit.

(c) 1i $Rd émm is a pseudo instruction with a 32 bit immediate. Convert it to a series
of actual MIPS instructions. For credit, you need to use the exact minimum of MIPS
instructions. (You can use high to signify the upper 16 bits of the immediate, and low to
signify the lower 16 bits.)

lui $Rd high
ori $Rd $R4 low

You can’t use something like addi or addiu since they sign extend the value. You will
get 1/2 points if you did addi or addiu but it was otherwise optimal (2 instructions). IF
you do something which works but is non-optimal in about 3 instructions, you will get 1/2
points. If you forgot the source register in the ori, you got 1/2 the points.

(d) The addiu instruction uses a 16 bit immediate. What is the largest constant which
can be added with the addiu instruction. (HINT: The immediate is sign extended).

2'5 _1is one answer. 2°2 — 1 is the other possibility, if you wish to treat all 1s as a positive
number.

Your name login cs6lc

Question 3 (6 points):

Each question is worth 6/5 of a point. 1 right gives 1 point, 2 right gives 2 points, 3 right
gives 3 points, 4 right gives 4 points, and 5 right gives 6 points.

Answer the following short questions. Be sure to read the questions carefully before an-
swering:

(a) True or false: For every 32 bit signed, two’s complement number there exists a corre-
spouding IEEE double precision floating point number.

True. Double precision has enough bits in the significand to represent all 32 bit signed
integers. Single precision does not.

(b) What is the difference between the add and addu instructions in MIPS?
addu does not detect overflow. Just saying addu is for unsigned only gives you 1/2 the

points. I really should have given nothing, since it is quite clear in the back of P&H that
the difference is overflow detection.

(¢) True or false: Two’s complement integer addition is not associative.

False. Two's complement integer is associative. Floating point is not.

(d) Using your 1st grade math, add the following pairs of 8 bit unsigned numbers together

111111 1111111
10110101 10111111

+ 00101111 + 01101011
11100100 00101010

(¢) Using saturating arithmatic, add the following 8 bit signed, twos complement numbers
together.

111111 111111
00110101 00111111
+ 00101111 + 01101011
01100100 10101011 -> 01111111

Question 4 (7 points):
Counsider this C program definition:

int foo(int a){
int i
int result = 1;
for(i = 0; i < a; ++i){
result = result + bar(i);

¥

return result;

Grading. -1 point for forgetting to save Ra. -2 points for using temporary registers and
thinking they would be saved across function calls. -1 point for needlessly saving results
on the stack instead of copyng the value to a saved register for something like 1 or a. -1
point for calling bar wrong. -1 point for getting the test in the loop wrong. -2 points for
clobbering saved registers. -1 point for not restoring the stack correctly. Beyond a certain
level of errors, its up to the charity of the grader. People really scemed to have trouble
with this, so I will go over the MIPS calling convention again on Monday.

My implementation uses $s0 for storing a, $s1 for i

and $s2 for result for the bulk of the function.
foo: addi $sp $sp -16 # Allocate stack space and save ra

sw $s0 0($sp) # and s0-s2 which I use

sw $s1 4($sp)

sw $s2 8($sp)

sw $ra 12($sp)

move $s0 $a0 # Copy a into s0
1i $s2 1 # initialize result and i
1i $s1 0 #
j test # Jump to the test (for loop)
loop: move $a0 $si # Call bar(i)
jal bar
add $s2 $s2 $vO # result = result + bar(i)
addi $s1 $s1 1 # i+
test: blt $s1 $s0 loop # If i < a we loop
move $v0 $s2 # Set up return value
1w $s0 0($sp) # Restore saved registers

1w $s1 4($sp)

1w $s2 8($sp)

1w $ra 12($sp)

addi $sp $sp 16 # Pop the stack
jr $ra # and return

(1}

Your name login cs6lc

Question 5 (5 points):

Write a MIPS function div4 which accepts a single argument which is an IEEE double
precision floating point number in $a0 and $al (with the most significant bits in $a0),
divides it by 4, and returns that value without using any floating point instructions.
You do not need to and should not include code to handle underflow, subnormal values,
+o0, or NaN. (Remember, IEEE double precision floating point has an 11 bit exponent
with a bias of 1023 and a 52 bit significand).

2 points for the basic concept, getting function calling right, ete ete. The other 3 points
are for details like making sure you actually replace the exponent with the new value,
subtracting 2 instead of doing something funky to the exponent, returning both parts of
the arguments. If you did something weird like trying to divide the significand, you will
get at most 2 points. You didn’t need to worry about O. (which would have only added a
test on the exponent in any case, and nobody did).

divé4: # This is VERY similar to the homework problem where you had to

multiply a single precision floating point number by 2. The idea
is to accomplish the division by modifiying the exponent, so

we isolate the exponent, subtract 2 (equivelent to dividing

the number by 4) and replace it. We don’t touch anything else
srl $t0 $a0 20 # get the exponent

andi $t0 $t0 0x7ff # 11 bit exponent

addi $t0 $t0 -2 # subtract 2, same as division by 4
to the number

s11 $t0 $t0 20 # shift things back

1i $t1 0x800fffff

and $a0 $a0 $t1 # All but the exponent

or $v0 $a0 $t0 # Replace the exponent

move $vi $al # We don’t touch the rest
of the significand

jr $ra # DONE!

