
CS 61C Midterm #1 | July 9th, 1998Your namelogin cs61c{This exam is worth 30 points, or 15% of your total course grade. The exam contains sixsubstantive questions, plus the following:Question 0 (1 point): Fill out this front page correctly and put your name and logincorrectly at the top of each of the following pages. It is AMAZING the number ofpeople which got this question wrong!This booklet contains seven numbered pages including the cover page, plus a copy of theback inside cover of Patterson & Henessey. Put all answers on these pages, please; don'thand in stray pieces of paper. This is a closed book exam, calucaltors are allowed.When writing procedures, write straightforward code. Do not try to makeyour program slightly more e�cient at the cost of making it impossible toread and understand.When writing procedures, don't put in error checks. Assume that you will begiven arguments of the correct type and speci�ed format.Our expectation is that many of you will not complete one or two of these questions. Ifyou �nd one question especially di�cult, leave it for later; start with the ones you �ndeasier. We will use truncate as our rounding mode to round all fractional points to integervalues.READ AND SIGN THIS:I certify that my answers to this exam are all my ownwork, and that I have not discussed the exam questions oranswers with anyone prior to taking this exam.If I am taking this exam late, I certify that I have notdiscussed the exam questions or answers with anyone whohas knowlegde of the exam.I also certify that I have never been captured by alien elvisclones for their diabolical experiments.
0 =11 =52 =63 =64 =75 =5total =301

Question 1 (5 points):Consider the following 32 bit binary value 11111111111111111111111111111110.Each part is 5/6th of a point, which since we truncate on the rounding, means that youlose a point for each missed question, with a minimum of 0.(a) Write this value out in hexadecimal.0xfffffffe(b) decimal, interpreting it as an unsigned value. Write this as the neares power of 2 andadd or subtract the approprate o�set. (EG, if you want to write 9, write 23 + 1.)232 � 2 Simply 2 less that 232.(c) decimal, interpreting it as a sign/magnitude value. Write this as the nearest power of 2and add or subtract the appropriate o�set. (EG, if you want to write -9, write �(23+1).)�(231 � 2) Its negative (because of the sign bit).(d) decimal, interpreting it as a ones complement signed value. Write this as the nearestpower of 2 and add or subtract the appropriate o�set.�1 aka �(20). Just invert the bits, since it is negative.(e) decimal, interpreting it as a twos complement signed value. Once again, write this asthe nearset power of 2 and add or subtract the appropriate o�set.�2 aka �(21) Invert the bits and add 1(f) What is this value if you interpret it as IEEE single precision
oating point? (Remem-ber, IEEE single precision
oating point has an 8 bit exponent with a bias of 127 and a23 bit signi�cand).NaN (Exponent is maximum and mantissa is nonzero)2

Your name login cs61c{Question 2 (6 points):Each part is 1.5 points, which means that 1 right gives 1 point, 2 right gives 3 points, 3right gives 4 points, and 4 right gives 6 points. When I wrote -1/2 it means you didn'tlose half a point, you lost have the credit for that question.(a) Encode the following MIPS instruction in its binary representation: lui $20 0xf00d001111 00000 10100 1111000000001110If you get the order of the Rs and Rd �elds wrong, you get half credit.(b) Decode the following binary number as a MIPS instruction and give the equivelentMIPS assembly language statement:00000001110100001010000000100000000000 01110 10000 10100 00000 100000add $20 $14 $16Once again, mixed up �elds gives half credit.(c) li $Rd imm is a pseudo instruction with a 32 bit immediate. Convert it to a seriesof actual MIPS instructions. For credit, you need to use the exact minimum of MIPSinstructions. (You can use high to signify the upper 16 bits of the immediate, and low tosignify the lower 16 bits.)lui $Rd highori $Rd $Rd lowYou can't use something like addi or addiu since they sign extend the value. You willget 1/2 points if you did addi or addiu but it was otherwise optimal (2 instructions). IFyou do something which works but is non-optimal in about 3 instructions, you will get 1/2points. If you forgot the source register in the ori, you got 1/2 the points.(d) The addiu instruction uses a 16 bit immediate. What is the largest constant whichcan be added with the addiu instruction. (HINT: The immediate is sign extended).215�1 is one answer. 232�1 is the other possibility, if you wish to treat all 1s as a positivenumber. 3

Your name login cs61c{Question 3 (6 points):Each question is worth 6/5 of a point. 1 right gives 1 point, 2 right gives 2 points, 3 rightgives 3 points, 4 right gives 4 points, and 5 right gives 6 points.Answer the following short questions. Be sure to read the questions carefully before an-swering:(a) True or false: For every 32 bit signed, two's complement number there exists a corre-sponding IEEE double precision
oating point number.True. Double precision has enough bits in the signi�cand to represent all 32 bit signedintegers. Single precision does not.(b) What is the di�erence between the add and addu instructions in MIPS?addu does not detect over
ow. Just saying addu is for unsigned only gives you 1/2 thepoints. I really should have given nothing, since it is quite clear in the back of P&H thatthe di�erence is over
ow detection.(c) True or false: Two's complement integer addition is not associative.False. Two's complement integer is associative. Floating point is not.(d) Using your 1st grade math, add the following pairs of 8 bit unsigned numbers together111111 111111110110101 10111111+ 00101111 + 01101011---------- ----------11100100 00101010(e) Using saturating arithmatic, add the following 8 bit signed, twos complement numberstogether. 111111 11111100110101 00111111+ 00101111 + 01101011---------- ----------01100100 10101011 -> 011111114

Question 4 (7 points):Consider this C program de�nition:int foo(int a){int i;int result = 1;for(i = 0; i < a; ++i){result = result + bar(i);}return result;}Grading. -1 point for forgetting to save Ra. -2 points for using temporary registers andthinking they would be saved across function calls. -1 point for needlessly saving resultson the stack instead of copyng the value to a saved register for something like i or a. -1point for calling bar wrong. -1 point for getting the test in the loop wrong. -2 points forclobbering saved registers. -1 point for not restoring the stack correctly. Beyond a certainlevel of errors, its up to the charity of the grader. People really seemed to have troublewith this, so I will go over the MIPS calling convention again on Monday.# My implementation uses $s0 for storing a, $s1 for i# and $s2 for result for the bulk of the function.foo: addi $sp $sp -16 # Allocate stack space and save rasw $s0 0($sp) # and s0-s2 which I usesw $s1 4($sp)sw $s2 8($sp)sw $ra 12($sp)move $s0 $a0 # Copy a into s0li $s2 1 # initialize result and ili $s1 0 #j test # Jump to the test (for loop)loop: move $a0 $s1 # Call bar(i)jal baradd $s2 $s2 $v0 # result = result + bar(i)addi $s1 $s1 1 # i++test: blt $s1 $s0 loop # If i < a we loopmove $v0 $s2 # Set up return valuelw $s0 0($sp) # Restore saved registerslw $s1 4($sp)lw $s2 8($sp)lw $ra 12($sp)addi $sp $sp 16 # Pop the stackjr $ra # and return5

Your name login cs61c{Question 5 (5 points):Write a MIPS function div4 which accepts a single argument which is an IEEE doubleprecision
oating point number in $a0 and $a1 (with the most signi�cant bits in $a0),divides it by 4, and returns that value without using any
oating point instructions.You do not need to and should not include code to handle under
ow, subnormal values,�1, or NaN. (Remember, IEEE double precision
oating point has an 11 bit exponentwith a bias of 1023 and a 52 bit signi�cand).2 points for the basic concept, getting function calling right, etc etc. The other 3 pointsare for details like making sure you actually replace the exponent with the new value,subtracting 2 instead of doing something funky to the exponent, returning both parts ofthe arguments. If you did something weird like trying to divide the signi�cand, you willget at most 2 points. You didn't need to worry about O. (which would have only added atest on the exponent in any case, and nobody did).div4: # This is VERY similar to the homework problem where you had to# multiply a single precision floating point number by 2. The idea# is to accomplish the division by modifiying the exponent, so# we isolate the exponent, subtract 2 (equivelent to dividing# the number by 4) and replace it. We don't touch anything elsesrl $t0 $a0 20 # get the exponentandi $t0 $t0 0x7ff # 11 bit exponentaddi $t0 $t0 -2 # subtract 2, same as division by 4# to the numbersll $t0 $t0 20 # shift things backli $t1 0x800fffffand $a0 $a0 $t1 # All but the exponentor $v0 $a0 $t0 # Replace the exponentmove $v1 $a1 # We don't touch the rest# of the significandjr $ra # DONE!
6

