
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2015 Instructor: Sagar Karandikar 2015-07-09

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...
	

Last Name

First Name

Student ID Number
Login cs61c-

The name of your SECTION TA (please circle)

Derek | Harrison | Jeffrey | Nathaniel | Rebecca

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)
• This exam contains 8 numbered pages including the cover page. The back of each page is

blank and can be used for scratch-work but will not be looked at for grading. (i.e. the
sides of pages without the printed “SID: _______” header will not even be scanned into
Gradescope).

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats &
headphones. Place your backpacks, laptops and jackets under your seat.

• You have 80 minutes to complete this exam. The exam is closed book; you may not use any
computers, phones, wearable devices, or calculators. You may use one page (US Letter, front
and back) of handwritten notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can.
We will deduct points if your solution is far more complicated than necessary. When we
provide a blank, please fit your answer within the space provided. “IEC format” refers to the
mebi, tebi, etc prefixes.

 Q1 Q2 Q3 Q4 Q5 Q6 Total
Points
Possible 13 13 14 15 20 15 90

L J

SID: _________________

2/8

Q1) Number Representation (13 pts)
a) Fill in the blanks with a letter (a, b, c or d) to match each expression in the left column, with an
equivalent expression from the right column:

i)

(x >> 16) << 16 = _____ a. 0

ii)

x ^ x ^ x = _____ b. ~x

iii)

x ^ -1 = _____ c. x

iv)

x & ~x = _____ d. x & 0xFFFF0000

b) Rewrite the following numbers using IEC prefixes or as approximations using IEC prefixes: ���

1024 = _________________ 106 = __________________ 243 = _________________

c) Convert the following 8 bit two's complement numbers into their decimal equivalents.

0x80 = _________________ 0x7E = _________________

d) Four's complement is very similar to two's complement in the sense that negation consists of
flipping digits and adding one to the "flipped" version of the value. To flip a value in 4's complement,
0's become 3's, 1's become 2's, and vice versa.
 e.g. 33324 = - (-33324) = - (00014 + 1) = - (00024) = -(0 + 0 + 0 + 2*40) = -2

A quaternary (base 4) digit is known as a crumb (in relation to bytes, nibbles, and bits). For the
following questions, we would like to convert the following 4-crumb 4’s complement numbers
(0cXXXX) to decimal. You may leave values in expression format. (Hint: How do we convert from hex
to binary?)

0c2000 = _________________ 0c1333 = _________________

Now using 8-crumb 4's complement, what would the quaternary representation of the following be?

270 = _________________ -17 = _________________

SID: _________________

3/8

Q2) Pointers and Memory Management (13 pts)
In this question, assume mallocs are always successful, pointers are 4 bytes, ints are 4 bytes,
doubles are 8 bytes, and chars are 1 byte.

a) Which is the most efficient implementation of f() given below? Explain in a sentence or two.

typedef struct { int vals[1000000]; } dataStruct;

1. int f(dataStruct d){ printf("%d", d.vals[0]); }
2. int f(dataStruct *d){ printf("%d" d->vals[0]; }
3. int f(dataStruct **d){ printf("%d",(*d)->vals[0]; }

_____ Explain: ___

b) Some of the code samples below contain issues with memory management. Below, identify the
first instance of such a mistake in each code sample and briefly describe the issue. If there is no
issue in the code sample, write “None”.

i.) double *pi_ptr;
pi_ptr = malloc(sizeof(pi_ptr));
*pi_ptr = 3.14;

Circle above and explain here: ___

ii.) char *a = "abcdef";
char **c = &a;
int x = 0;
while(**c != NULL){
 printf("%s", *(c + x));
 x++;
}

Circle above and explain here: ___

SID: _________________

4/8

c) Below are two renditions of similar code for a simple function foo(). Identify the number of bytes
stored in the stack, heap, and static up to the line marked with “ç here” for each piece of code.
Include allocations only from the lines shown; assume registers are not used. You can assume that
all calls to malloc succeed (do not return NULL).
i) Snippet #1:

char str[] = "this string";

int foo (int a, int i) {
 char* thisPtr = malloc(sizeof(char) * 12);
 thisPtr = str;
 char* thatPtr = "that string";
 int i = 0;
 while (thisPtr[i]) {
 if (thisPtr[i] != thatPtr[i])
 thisPtr[i] = thatPtr[i];
 i++;
 }
 ...// ç here

Stack: ________ Heap: ________ Static: ________

ii) Snippet #2: Now, follow the same steps as in the previous code snippet for the code below.
However, the code below may contain bugs. If you find a bug in the code below, explain what the bug
is and then give the number of bytes in stack, heap, and static right before the bug occurs. You may
assume that everything malloc’d is eventually freed (for example in the “…” section of the code).
Therefore, “memory leak” is not a potential bug.

char *str = "this string";
char *str2 = "that string";
typedef struct{ char* str; int size;} bigStr;

int foo () {
 bigStr* thisPtr = malloc(sizeof(bigStr));
 bigStr* thatPtr = malloc(sizeof(bigStr));
 thisPtr->str = str;
 thatPtr->str = str2;

int i;
 for(i=12; i>=0; i--) {
 thatPtr->str[i] = thisPtr->str[i];
 }
 ...// ç here
}

Stack: ________ Heap: ________ Static: ________
Errors (if any):

SID: _________________

5/8

Q3) Linked List (14 pts)

Run Length Encoding
Complete the compress_ll() function so that it will compress consecutive values in a linked list
according to the provided struct below and update the count field in the struct, which represents the
number of consecutive copies of the associated value we have seen so far. This compression is
known as run-length encoding and is typically used for data compression.

struct ll {
 int value;
 int count; // count used for following problem
 struct ll* next; // pointer to next element
};

For example, given the lists below:
Before:

After:

You may assume that we will pass in a valid node so you do not need to check that the initial node
passed in is not NULL. You might not need all of the blank lines.
Note that all list nodes were created via dynamic memory allocation.

void compress_ll(struct ll** node, int curr_value) {
 struct ll* next_node = (*node)->next;

 if (__) {
 int next_value = next_node->value;

 __

 if (__) {
 (*node)->count += 1;

 __

 __

 __
 } else {

 __

 __
 }
 }
}

Node 1:
Value = 3
Count = 1

Node 2:
Value = 3
Count = 1

Node 3:
Value = 3
Count = 1

Node 4:
Value = 4
Count = 1

Node 4:
Value = 3
Count = 1	

Node 1:
Value = 3
Count = 3

Node 2:
Value = 4
Count = 1

Node 3:
Value = 3
Count = 1	

SID: _________________

6/8

Q4) Array Hacking (15 pts)
Write code to dynamically allocate an NxN integer array laid out in contiguous memory that will
function with the bracket notation array[x][y]. Specifically the array of N row_ptrs should be
contiguous in memory and the entire data array of N*N elements should be laid out in contiguous
memory (data[N*N - 1] should give you the last element and data[0] should give you the first
element). row_ptrs[0] should be a pointer to the first element in data, row_ptrs[1] should be a
pointer to the N-th element in data. You might not need all the blank lines.

_________ allocate_2d_array(int N){

 _________ data = malloc(sizeof(__________)*N*N);

 _________ row_ptrs = malloc(sizeof(___________)*N);
 int i = 0;
 while(i < N){

 _________________________________;

 _________________________________;
 i++; row_ptrs++;
 }

 ___;

 return ____________________________________;
}

Write code to free all of the memory allocated in allocate_2d_array:

void deallocate_2d_array(int **row_ptrs){

 _______________________________;

 _______________________________;
}

SID: _________________

7/8

Q5) MIPS Bit Manipulation (20 pts)
Complete the MIPS function that prints AND returns the number of bits that are different between the
upper 16 bits and the lower 16 bits of a 32-bit unsigned number passed in as an argument. Assume
there’s a print function (defined elsewhere, called printer) that prints the one integer argument given.

Please follow calling conventions; you might not need all of the lines below. On a line that is followed by a
comment, you must write an instruction that obeys the operation indicated by the comment.

Two examples: bitsDifferent(0xFFFF0001) à 15. bitsDifferent(0xFFFFFFFF) à 0.

bitsDifferent:

 addi ________________

 li $s0, 0xFFFF

 _____________________#logical right shift $a0 by 16, put result in $s1

 xor $s1, ____________

loop:
 beq _________, $zero, exit

 srl ______________, 1

 j loop
exit:
 move _________________

 sw ______________($sp)

 ______________ printer

 ______________________ # return control to caller of bitsDifferent

SID: _________________

8/8

Q6) C ó MIPS (15 pts)

a) Fill in the blanks to translate between MAL MIPS, TAL MIPS, and Machine Code . Wherever you
are given space to write both binary and hex for machine code, we will only grade the hex.

Address MAL MIPS TAL MIPS
0x102cff00 sll $v0, $v0, 5 sll $v0, $v0, 5

 0b ____________________== 0x_________

0x102cff04 ______ $a0, $a1, Else ______ $a0, $a1, Else

 0b 000100 | 00100 | 00101 | ____________________

0x102cff08 mul $t0, $a0, $a1 ____________________________

0x102cff0c _______ $t0

0x102cff10 j Exit j Exit

 0b ____________________== 0x_________

0x102cff14 Else: <some instruction here>

0x102cff18 Exit: j Far ____________________________

0x102cff1c ____________________________

0x102cff20 jr $at

 0b 000000 | ___________ | 00000 | 00000 | 00000 | 001000

 ……

 ……

0x20000004 Far: lw $v1, 0($v0) lw $v1, 0($v0)

 0b ____________________== 0x_________

