Login: cs6lc-_pp_

CS61C Summer 2012 Midterm

Your Name: _Peter Perfect SID: _00000000
Your TA (Circle): Raphael Paul Brandon Sung Roa
Name of person to your LEFT: _Sammy Student

Name of person to your RIGHT: _Larry Learner

This exam is worth 110 points and will count for 20% of your course grade.
The exam contains 9 questions on 13 numbered pages, including the cover page. Put all

answers on these pages; don’t hand in stray pieces of paper.

Question 0: You will receive 1 point for properly filling out this page as well your
login on every page of the exam.

Question Points (Minutes) Score

0 1(0)

1 15 (26)
2 10 (14)
3 10 (18)
4 9 (16)
5 10 (18)
6 17 (26)
7 12 (22)
8 26 (40)

Total 110 (180)

All the work is my own. | had no prior knowledge of the exam contents nor will | share the
contents with others in CS61C who have not taken it yet.

Signature:

Question 1: Potpourri — Hard to spell, nice to smell... (15 points, 26 minutes)

a) True/False: (1 pt each)

T @ We prefer two’s complement over the unsigned representation because two’s

complement can represent more values. Same number (e.g. 2

AMAT calculated per memory access

" T QOO

@
@

32)

Pseudo-instructions do not always use $at.

The assembler uses symbol tables to resolve absolute addresses. Linker’s job
A program will always execute faster in a RISC architecture than a CISC architecture.

Mix of # instructions, CPI, and clock rate for a particular program can go either way
The greater the number of memory accesses in a program, the greater the AMAT.

Since $s0 is a "saved register," it does not need to be saved before any function calls.

b) Fill in the function below, which returns a new copy of the argument (struct definition not shown):

struct something *cpySomething(struct something *old) {

struct something *new = malloc(sizeof(struct something));

*new = *old;

return new; (1 pt each line)

c) Hereis whatis currently on the heap:

LA [A | A | c

| b [D

The order of allocation/frees: A allocated, B allocated, C allocated, B freed, D allocated

What allocation strategy was used?

next-fit (2 pts)

d) What is the average CPI of the program described

in the table to the right? Which is better: halving

memory access cycles or arithmetic cycles and

why?

Instruction Category | Cycles | Frequency
Memory Access 10 0.1
Arithmetic 2 0.4
Branch 3 0.2
Comparison 1 0.3

CPI = 10%0.1 + 2*0.4 + 3*0.2 + 1¥0.3 = 2.7 (1pt)
Half mem access: 5*0.1+2*0.4 +3*0.2+1*0.3=2.2

Half arithmetic: 10*0.1 + 1*0.4 + 3*0.2 + 1*0.3 = 2.3, so halving mem access is better
(1 pt w/explanation)

Login: cs6lc-_pp_

e) I'm getting the message “cannot execute binary file”. In one or two sentences, explain
what the problem is and how to fix it. (1pt w/explanation)

Assuming not a corrupted file, then the executable was compiled on another machine with a
different architecture and can’t be read. Re-compile on the current machine.

f) In our 32-bit single-precision floating point representation, we decide to convert one significand bit
to an exponent bit. How many denormalized numbers do we have relative to before? (Circle one)

Half as many because
More lost a significand bit (1 pt)
Rounded to the nearest power of 2, how many denorm numbers are there in our new format?
(Answer in IEC format) (1 pt)

22 significand bits + sign bit but not counting +0, so exactly 2*>-2 denorms __8Mebi#is___

Question 2: Flippin’ Fo’ Fun (10 points, 14 minutes)

Assume that the most significant bit (MSB) of X is a 0. We store the result of flipping X’s bits into V.
Interpreted in the following number representations, how large is the magnitude of y relative to the

@ > D Can’t Tell

One’s Complement Iyl < IxI] @ /' lyl > Ix] Can’t Tell

magnitude of X? Circle ONE choice per row. (2 pts each)

I
x

Unsigned lyl < Ix] M

Two’s Complement Iyl < Ix] Iyl = Ix] @ >@ Can’t Tell
Sign and Magnitude lyl < Ix] Iyl = IxI] lyl > Ix] Qn’tTell

Biased Notation
(e.g. FP exponent)

I
x

Iyl < Ixl Iyl

Iyl > IxI Can’t Tell

e |nunsigned, a number with the MSB of 1 is always greater than one with a MSB of 0.

e Inone’s complement, flipping all of the bits is the negation procedure, so the magnitude will be
the same.

e |ntwo’s complement, y is a negative number. Its magnitude can be found by applying the
negation procedure, which is flipping the bits and then adding 1, resulting in a larger magnitude
than x.

e Insign and magnitude, the 2™ MSB bit will determine the relative magnitudes of x and y, so you
can’t tell for certain.

e |n biased notation, you read the number the same as unsigned but apply a constant bias to
BOTH numbers, so the relation is the same as in unsigned numbers.

Question 3: Doctor Who?!? (10 Points, 18 Minutes)

The Daleks are invading the Earth again, and we need the help of the Doctor! Find the errors in this
code and fix them so that the code correctly prints "The 10th Doctor and the Blue Police Box". There is
exactly one coding error for each function and function call pair and can be fixed by changing 5 or 6 lines

total. Fill in the corrections in the blanks on the opposite page.

void whichDoctor(int* input) {
input = 10;
}

void doctorChanger(char** inputl, char** input2) {
char* temp = *inputl;
*inputl = *input2;

*input2 = temp;

}

char* policeBoxGiver(char* input) {
*input = "The Master";
return "Police Box";

}

char* colorMaker(void) {
char* color = malloc(sizeof(char) * 4);

color[0] = "B";
color[1] = "I";
color[3] = "u-";
color[2] = "e";
color[4] = O;

return color;

}

char* colorFixer(char* input) {
char temp = *(input+2);
*(input+2) *(input+1);
*(input+1) temp;

int main(void) {
int * ith = malloc(sizeof(int));

whichDoctor(ith);

char* doctor = ""Master';
char* master = "Doctor"';
char* details = "and the';

char* color = colorMaker();
colorFixer(color);

char* box = "David Tennant';
doctorChanger(doctor, master);
policeBoxGiver(box);

printfF("'The %dth %s %s %s %s",*ith,doctor,details,color,box);

Login: cs6lc-_pp_

Line # Corrected Code

2pts 2 *input = 10;

2pts 14 _char* color = malloc(sizeof(char) * 5);
1pt 24 *(input+2) = *(input+3);

1pt 25 _*(input+3) = temp;

2pts _ 36 _doctorChanger(&doctor, &master);

2pts 37 _box = policeBoxGiver(box);

For each answer you did NOT get correct, you -2 pts.

If you added a sixth error, =1 pt. (That means if you answered five correct lines and one incorrect line, you

received 9 pts).

There were multiple accepted answers for the colorFixer function, which are:
23 char temp = *(++input + 2);
(between 22/23) input++;
34 colorFixer(color + 1);

There were also multiple accepted answers for the pol iceBoxGiver function, which are:
11 return strcpy(input, “Police Box™);
10 strcpy(input, “Police Box™);

For line 14, 0.5 pts if you did:
char* color = malloc(sizeof(char) * 4 + SOME_VALUE)

Question 4: Let Me Float This Idea By You (9 Points, 16 Minutes) (—1pt if 32 bits used)

For a very simple household appliance like a thermostat, a more minimalisticpéprocessor is desired
to reduce power consumption and hardware costs. We have selected a 16-bit microprocessor that does
not have a floating-point unit, so there is no native support for floating point operations (no
float/double). However, we’d still like to represent decimals for our temperature reading so we're
going to implement floating point operations in software (in C).

(also accepted: unsigned int)
a) Define a new variable type called fp: (1 pt)

_typedef int fp;

Many people were not sure what to do here. 1 pt was given mainly to those who wrote a valid statement using
typedef or the #define directive, or were close. Struct definitions were also accepted.

We have decided to use a representation with a 5-bit exponent field while following all of the
representation conventions from the MIPS 32-bit floating point numbers except denorms.

Fill in the following functions. Not all blanks need to be used. You can call these functions and assume

proper behavior regardless of your implementation. Assume our hardware implements the C operator
“>>" as shift right arithmetic.

b) (1 pt)

/* returns -num */
fp negateFP(fp num) {

return _num ~ 0x8000 ;

}

If you assumed 32-bit type, then using 0x80000000 was okay.

c) (1 pt mask/shift, 1 pt bias)

/* returns the signed value of the exponent */
int getExp(fp num) {

return _((num & 0x7C00) >> 10) — 15 ;

}

0x7c00 to zero out everything but the exponent field, shift right by 10 to get the unsigned value, then subtract bias

of 2* — 1 = 15 to get the actual signed value.

Login: cs6lc-_pp_

d) (1 pt per line)

/* multiplies floating point num by 2”°n, while detecting over/underflow */
/* remember, there are no denorms */
fp multPow2(fp num,int n) {

_iInt exp = getExp(num) + n; /* get exponent or exponent + n */

if(exp > 15) exit(1l); #Hoverflow

if(exp < -15) exit(-1); #underflow

_num &= Ox83FF; /* zero old exponent */

return _num | ((exp + 15) << 10); /* set new exponent */

¥

5 pts total:
First line: 1pt for trying to get the exponent by means of getExp(num) or manually retrieving it.
Second and third line: —0.5 pt each line if the numeric value on the right was close, but not correct.

Fourth and fifth: needed to correctly zero out the exponent field of num, and OR or add the modified
exponent back into that field. 1pt for not forgetting to re-add the bias, and 1pt for getting the masking/shifting
right.

Other:

-1 pt for left shifting the exponent by n instead of adding.

If you didn’t add the 15 bias because in getExp() you didn’t subtract the 15 bias, then | didn’t mark you off
for that.

Question 5: Who Says Less is Better? (10 points, 18 Minutes)

We're going to take a page out of the ARM book and design a new instruction set architecture with just
16 32-bit registers. This means that we only need 4-bit register fields in our instructions.

a) How many extra bits do we have now for other fields in the following formats? (1 pt each)
Just the # of register fields per format: R: 3 J: 0

b) For R-format instructions, would you give the extra bits to opcode, shamt, or funct? _ funct
Explain your choice in a sentence or two (no credit without explanation): (2 pts w/explanation)

Can represent more R-format instructions while maintaining consistent opcode. shamt only needs
to be 5 bits for 32-bit registers. =1 pt if choice was funct but explanation did not include the
reason for not picking opcode and shamt.

For I-format instructions, we naturally give the extra bits to the immediate field, resulting in the
following format:

[opcode (6) | rs (4) | rt (4) | immediate (18)]

c) What fraction of our address space can we now reach with a branch instruction? (2 pts)
1/4096 =2"%
Address space = 2*2 B, branch immediate represents 2*® instr = 2° B.
People forgot to put it in fraction, but if | saw 2*? B for address space and 2'® instr = 2°° B for branch
reach, then | gave 1 pt.
d) Assume our PC currently contains the address 0x08000000.
What is the LOWEST address (in hex) we can reach with a branch? ____0x07F80004

On a branch, new PC = PC+4 + 4*imm. Most negative immediate is 0x20000, so imm*4 =
0x80000. Sign-extended, this becomes OXFFF80000. Then 0x08000004 + OxFFF80000 =
0x07F80004.

(1 pt for seeing PC+4, 1 pt for seeing correct lowest branch distance, 1 pt for correct hex math)

e) Write out the Verilog pseudocode (as in the OPERATION column on the MIPS Green Sheet) for beq.
Make sure you specify what BranchAddr is. (1 pt)
if(R[rs] == R[rt])
PC = PC+4 + { 12{immediate[17]}, immediate, 2°b0 }

Many, many people did not specify BranchAddr in the form above.
Some people didn’t put 12 as the number of times to extend the immediate’s sign bit.

Login: cs6lc-_pp_

Question 6: Cache in While You Can (17 points, 26 Minutes)
Consider a single 4KiB cache with 512B blocks and a write-back policy. Assume a 32-bit address space.

a) If the cache were direct-mapped, (1 pt each)
of rows? 8 # of offset bits? 9

2'2/2° = 8. log,(512) = 9.

b) If the cache were 4-way set associative,

of tag bits? 22 # of index bits? 1 # of bits per cache slot? 4120
(1 pt) (1 pt) (2 pts)

8/4=2,log,(2)=1. 32—-1-9=22. 512*8 +22 + 2 =4120. If tag wrong, 512*8 + wrong_tag + 2
accepted (if obvious algebraic mistake, -1 pt).

Consider an array of the following location structs:

typedef struct {
... // some undefined number of other struct members
int visited;
int danger;

} location;

location locs[NUM_LOCS];

Here's a piece of code that counts the number of places we've visited. Assume this gets executed
somewhere in the middle of our program, that count is held in a register, and the size of the array is
greater than 4 KiB.

for(int 1 = 0; 1 < NUM_LOCS;
if(locs[i].visited) count++;

c) What's the fewest possible number of bytes writtenteqmain memory? (1 pt) 0B
d) What's the greatest possible number of bytes written to mainwemory? (1 pt) 4 KiB
We're reading, not writing. What will be written back are dirty blocks already in the cache.

Now consider if we store the visited and danger information in individual arrays instead:

int visited[NUM_LOCS];

int danger[NUM_LOCS]; -0.5 pt if missing the word “locality.”

e) This way, the cache can exploit better ___spatial locality___ for the above task. (1 pt)

We can expect a lower (higher or lower) miss rate (1 pt)

because of the change in the number of compulsory (type of cache miss) misses. (1 pt)

(also accepted: read)

Consider the following code with NUM_LOCS > 2/10.

for(int 1 = 0; 1 < NUM_LOCS; i++)

if(visited[i] && danger[i] > 5) count++;

Two memory accesses are made per iteration: one into visited, the other into danger. Assume that

the cache has no valid blocks initially. You are told that in the worst case, the cache has a miss rate of

100%. Consider each of the following possible changes to the cache individually.

f)

Mark each as E, if it eliminates the chances of this worst-case scenario miss rate, R if it reduces the
chances, or N if it’s not helpful. (2 pts each)

e More sets, same block size, same associativity _R__
e Double associativity, half block size, same total cache size _E
e Everything stays the same but use a write-through policy instead _N__

Given that the worst case miss rate is 100% for blocks that hold more than 1 piece of array data, our
cache must be direct-mapped. In addition, the worst case happens when the visited and danger
arrays start in blocks that map to the same row AND have the same offset.

e With more sets/rows, we are increasing the size of the cache. If the cache size changes such
that addresses of visited[i] and danger[i] no longer map to the same row, then we no
longer have the worst case scenario. This is not guaranteed to happen, so the chances are
reduced.

e Increasing associativity completely removes the ping-pong effect.

e A write-through policy does not change the behavior of the cache at all.

10

Login: cs6lc-_pp_

Question 7: Can’t Make Copies Fast Enough (12 points, 22 Minutes)

We are revisiting our friend the Fast String Copy from lecture! Recall that the function prototype in Cis

as follows:

char *strcpy(char *dst, char *src);

Consider the following MIPS implementation of this function:

jJal strcpy # begin function call

strcpy:

addi $v0,%$a0,0

loop: Ib $t0,0(%al)

sb $t0,0(%$a0)
addiu $a0,%a0,1
addiu $al,$al,1
beq $t0,%zero,exit

] loop

exit: jr $ra

Suppose we are running code on a machine with the following cache parameters:

a)

b)

e Unified L1$ with a hit time of 2 cycles and a hit rate of 95%

e Miss Penalty to main memory of 200 cycles

e Base CPI of 1.5 (in the absence of cache misses)

Calculate our machine’s AMAT: (1 pt)

AMAT = HT + MR x MP = 2 + 0.05x200 = 12 cycles (—0.5 pt for algebraic mistake)

What is the CPI of a single call to strcpy with src = (the function call includes the jal)?
There are 8 instructions executed, 2 of which are Ib/sb. Unified $ also handles instruction fetches.
CPI = CPlp,s + Accesses/Instr x MR x MP = 1.5 + 1.25x0.05x200 = 14 cycles

(1 pt data accesses, 1 pt instruction accesses (> 1 accesses/instr), 1 pt CPI calculation)

(—0.5 pt for algebraic mistake)

We decide to add a L2S to reduce our AMAT to 6. Our L2$ has a hit time of 20 cycles. What’s the
worst Local Hit Rate that will still meet our AMAT goal? (1 pt MR, 1 pt HR)

AMAT = HT; + MR(HT, + MR,xMP). Solving with AMAT = 6, we get MR, = 0.3, so worst HR; of 70%.
(—0.5 pt for algebraic mistake, —1 pt for not substituting or substituting incorrect values)

11

d)

In addition to speeding up our architecture, we want to speed up our code, so we decide to
eliminate the return value (presumably the caller retains a copy of the destination pointer). In this
case, the strcpy function above can be rewritten in just 6 instructions. Write out this
implementation in the blanks below, introducing any necessary labels (don’t worry about any label
name clashes with strcpy).

strcpy?2:

e)

f)

_1Ib $t0,0(%al) (1 pt removal of $v0 instr with 6 instructions here)

_sb $t0,0(%a0)

_addiu $a0,%a0,1

_addiu $al,$al,1l

_bne $t0,%zero,strcpy2 (1 pt bne and jr)

_jr $ra

If we call strcpy and strcpy2 on the same src string of length n+1=N (N includes “\07), what is
the ratio of instructions executed in strcpy to instructions executed in strcpy?2 (including the
jal)? Leave your answer in terms of N. (3 pts)

strcpy executes 6*(N-1)+5+3 instructions (6 instr per full loop, 5 instructions on last loop, plus
Jal/$v0/jr) = 6N+2. strcpy?2 executes 5*N+2 instructions (5 instr per loop plus jal/jr).

So ratio is (6N+2)/(5N+2).

1 pt for numerator and denominator (0.5 pt each for counting the instructions in the loop, and 0.5
pt each for counting the rest). 1 pt for strcpy/strcpy?2 rather than strcpy2/strcpy.

Is the ratio in part (e) the same as the relative performance between these two functions? Ina
sentence or two, explain why or why not. (1 pt w/explanation)

No, performance (latency) is measured in execution time, not instruction count. The ratio in (e)
does not take memory accesses into account.

12

Login: cs6lc-_pp_

Question 8: Putting the Science in Computer Science (26 points, 40 minutes)

DNA can be called the “alphabet of life.” From a very simplified view, DNA within a cell produces amino
acids, which in turn produce proteins, which are the building blocks for most of your body. Here we’d
like to write some code for examining a strand of DNA.

a) DNA is made up of nucleotides, which we write shorthand as A, C, G, and T. DNA is in base 4
(quaternary)! Fill in the table below, using the DNA nucleotide symbols in alphabetical order
(A<C<G<T). (2 pts each)

01 2 3
Decimal DNA
(1 pt given for visible 19 CAT 1x4% + Ox4' + 3x4° = 19
algebraic mistakes) 5 0
50 TAG 50 = 3x4° + 2x4

An amino acid is encoded by three nucleotides. Because DNA is found in long strands, the following 5
nucleotides can be read 3 different ways:

Reading Frame 1

ACATG

o

Reading Frame 2

The sequence ATG (as seen in the 3" reading frame) signals the beginning of a protein (“start codon”).

b) Fill in the blanks on the opposite page for the recursive function Find_start in MIPS that returns
the position of the first start codon found in the given strand of DNA. Assume each nucleotide is
stored as a char in memory. Blanks do not necessarily need to be filled. Maximum points awarded
for using the fewest amount of registers and memory. (code on pg. 13, explanation on pg. 14)

[Answer the following AFTER looking at the code]

Assume we call find_start from main with char dna[] = “GCATGC”;.

c) How many total frames are created on the Stack (not including main)? ___6(2pts)_
3 frames each for find_start and strilen. —1 pt for 3.
d) Whatis the maximum depth of the Stack (in # of frames, not including main)? __4(2pts)___

3" call of Find_start still calls strilen. -1 pt for 3.

e) What will the line J ret look like once this file is run through the assembler? _0x08000000 (1 pt)_
Object file is in machine language. Absolute address not known, so filled with zeros.

f) Where will the label ret show up? (Circle one) (2 pts)

Symbol Table Relocation Table Neither

retis a label in file, so in symbol table. Also needed later for j ret, so in relocation table.
All or nothing for grading.

13

C function prototype:

/* dna: start address of DNA strand */
/* pos: search position from start of strand */

int find_start(char *dna, iInt pos);
find_start: find_start:
addiu $sp,$sp,-4_ # PROLOGUE addiu $sp,$sp,-4_
sw $ra,0($sp)_ (2 pts) sw $ra,0($sp)_
jal strlen # call strlen(dna); jal strlen
check end
addi $t0,$v0,-3_
slti $t0,$v0,3 (4 pts) st $t0,$t0,%al
beq $t0,$0,chk # check amino acid beq $t0,3$0,chk
addi $v0,%$0,-1 # return -1 addi $v0,%0,-1
J ret # “ret” for return j ret
chk: move $t0,%a0 (2 pts) chk: add $t0,%a0,%al
Ib $t1,0($t0) Ib $t1,0($t0)
addi $t2,%$0,65 addi $t2,%$0,65
bne $tl1,%t2,rec bne $tl1,%t2,rec
Ib $t1,1($t0) Ib $t1,1($t0)
addi $t2,%$0,84 (1 pt) addi $t2,%$0,84
bne $tl1,%t2,rec bne $tl1,%t2,rec
Ib $t1,2($t0) Ib $t1,2($t0)
addi $t2,%$0,71_ (1 pt) addi $t2,%$0,71_
bne $tl,%t2,rec bne $tl1,%t2,rec
move $vO,%al (1 pd) move $vO,%al
j ret j ret
rec: addiu $a0,%$a0,1 (2 pts) rec: addiu $al,$al,l
addiu $al,%al,l_
jal find_start jal find_start
ret: ret:
Iw $ra,0($sp)_ (2 pts) Iw $ra,0($sp)_
addiu $sp,$sp,_4_ addiu $sp,$sp,_4_
jr $ra Jjr $ra

14

Login: cs6lc-_pp_

There were multiple ways to correctly fill in the code. Any equivalent lines (MAL and TAL both accepted)
were counted provided proper behavior. Two different solutions are shown on the previous page.

In the left column, the recursion is done by incrementing both the pointer and position counter. In this
case, the value returned by strlen in $v0 decreases with each recursion and you need to check if
$v0<3 (checking for $v0<0 also works). The pointer moves, so you just load characters off of $t0=%$a0.

In the right column, the recursion is done by incrementing just the position counter. In this case, the
value returned by strlen in $vO0 is constant (n) and you need to check if pos>n-3. The pointer doesn’t
move, so you load characters off of $t0=$a0+$al.

No additional registers were needed beyond what was given ($t0-$t2, $a0, $al, $v0).
-1 pt for each additional register used.

No saved registers are needed and no temporary registers are needed once the recursive call returns, so
$rais the only register that needed to be saved. -1 pt for each register used that did not follow MIPS
register conventions. For example, if you used $s0, you needed to have saved/loaded it in the
prologue/epilogue to avoid losing 2 points instead of 1.

Grading Procedure:

1) Checked prologue and epilogue. —1 pt for not saving $ra. As noted, —1 pt for each additional
register saved (same for around the recursive call).

2) Checked choice of recursion implementation. =1 pt for not incrementing $al (function
prototype returns an int, not a char *).

3) Checked correct setting of $t0 at chk label based on recursion choice.

4) Checked characters (84 for ‘T’ and 71 for ‘G’). These were on the MIPS Green Sheet or could
have been counted from 65 = ‘A’. =1 pt if swapped (check for ‘AGT’ instead of ‘ATG’).

5) Checked return value if start codon found. Needed to be $al (return int, not char *).

6) Bounds checking:

-1 pt if jumped to ret without setting $vO to -1 (-1 indicates start codon not found, as
noted in comments).

-2 pts if logic was inverted (returned -1 when should have jumped to chk and vice-versa),
chk was unreachable, or used check for other recursion method.

7) -1 pt for each additional register used and register use that didn’t followed register
conventions.

15

