
1/11 

University of California, Berkeley – College of Engineering 

Department of Electrical Engineering and Computer Sciences 

Summer 2010 Instructor: Paul Pearce 2010-07-16 
 

 CS61C Midterm 
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”... 

 

Last Name Answer Key 

 First Name  
 
 

Student ID Number  

Login cs61c- 

Login First Letter (please circle) a  b  c  d  e  f  g  h  i  j  k  l  m 

Login Second Letter (please circle) a  b  c  d  e  f  g  h  i  j  k  l  m  

n  o  p  q  r  s  t  u  v  w  x  y  z 

The name of your LAB TA (please circle) Eric   Tom   Noah   Alex  

Name of the person to your Left  
Name of the person to your Right  

All the work is my own and I have collaborated with no 
one. I had no prior knowledge of the exam contents nor 
will I share the contents with others in CS61C who have 

not taken it yet. (Please sign) 

 

a) Instructions (Read Me!) 

 Don’t Panic! 

 This booklet contains 12 numbered pages including the cover page and MIPS reference guide. Put all 
answers on these pages; don’t hand in any stray pieces of paper. 

 Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Sit in every other seat. 
Nothing may be placed in the “no fly zone” spare seat/desk between students. 

 Question 0 (1 point) involves filling in the front of this page and putting your login on every sheet of paper. 

 You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs, 
calculators. You are allowed 1 page of notes, front and back.  

 A MIPS reference sheet has been provided as the last page of this handout. You should rip it off. 

 There may be partial credit for incomplete answers; write as much of the solution as you can. We will 
deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit 
your answer within the space provided. You have 3 hours...relax. 

 

 
Question 0 1 2 3 4 5 6 Total 
Minutes 1 15 20 25 15 20 25  (+59 to review) =  180 
Points 1 39 20 50 20 25 35 190 

Score 1 39 20 50 20 25 35 190 



Login: cs61c-__Answers__ 

2/11 

Question 1: Where’s the kitchen sink? ……………….……………… (39 pts, 15 min) 

 

Part 1: CS61C trivia 
 

True/False: Circle the correct answer in the right-hand column. 

a) You must use the addu instruction to add unsigned numbers.    T      F 

b) You do not need to save volatile registers if your code doesn’t call any 
subfunctions. 

   T      F 

c) You do not need to save volatile registers if they won’t be modified by any 
subfunctions. 

   T      F 

d) We add a bias to floating point exponents to increase the range of values we 
can represent. 

   T      F 

e) The instructions srl and sra behave identically on positive (2’s complement) 
numbers. 

   T      F 

f) There are situations where using first-fit will cause less fragmentation than 
best-fit. 

   T      F 

g) The size of a structure that contains only 2 ints and 1 char will be 9 bytes.    T      F 

 
 
 
Fill in the blank: neatly write your answer in the right-hand column 

h) How many things can you represent with N bits? 
 
2N 

i) Suppose you are given N bits. How many more bits would you need if 
we wished to triple the number of things we wanted to represent? 

 
2 

j) Assuming the following C code declaration: 
 
char str[] = “Hello World”; 

 

What will sizeof(str) return? 

 
 
12 

k) Assuming the following C code declaration: 
 
char *str = “Hello World”; 

 

What will sizeof(str) return? 

 
 
4 

l) Assuming the following C code declaration: 
 
char str[] = “Hello\0World”; 

 

What will strlen(str) return? 

 
 
5 

(Continued on next page) 

 



Login: cs61c-____ 

3/11 

Question 1: Where’s the kitchen sink? (Continued) ………………… (39 pts, 15 min) 
 
Part 2: Number representation 
 
So far we have studied 4 different methods for representing integers using 32-bits. These methods can 
be generalized to any number of bits. 
 
Fill in the bit patterns for the following 4-bit numbers. If there are multiple bit patterns for a given 
number, write them all. If no bit pattern exists to represent the given number, write “N/A” in the box 
(don’t leave it blank!). The first one has been done for you already.           

 

 Unsigned 
Sign & 

Magnitude 
One’s 

Complement 
Two’s Complement 

0 0000 0000, 1000 0000, 1111 0000 

-1 N/A 1001 1110 1111 

15 1111 N/A N/A N/A 

 

Now fill in the decimal (base 10) value for the following 4-bit numbers. The first one has been done for 
you already. 
 

 Unsigned 
Sign & 

Magnitude 
One’s 

Complement 
Two’s Complement 

Number with 
bit pattern 

0b1100 
12 -4 -3 -4 

Number 

closest to + 
15 7 7 7 

Number 

closest to - 
0 -7 -7 -8 

 

 

Part 3: Compiling/Linking/Loading 
 

Fill in the blanks to specify during what stage each action occurs. Use abbreviations CO=Compiling, 
AS=Assembly, LI=Linking, LO=Loading. 
 
__LI__ Jump labels are resolved 
 
__AS__ Short branch labels are resolved  
 
__LO__ The operating system handles this stage 
 
__CO__ Code is translated from C->MAL 
 
__AS__ Code is translated from MAL->TAL 



Login: cs61c-__Answers__ 

4/11 

Question 2: Did somebody say “Free Lunch”?! ……………………… (20 pts, 20 min) 
Consider the following 10-bit floating-point format.  It contains the same fields (sign, exponent, 

significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exponent, 

non-numeric values, etc.). It simply allocates its bits differently. Please answer the following questions, 

and show all your work in the space provided. We went ahead and got you started. 

 

 

 

Number represented by 0x00:                     ______   ___0_          

 

# Bits in the Mantissa:                 ____________6__________ 

 

a) Exponent Bias:                                     ____       3            
 

 

 

 

 

 

 

b) Implicit exponent for denormalized #’s:                   ____       -2           
 

 

 

 

 

 

 

c) # of Numbers between (2 ≤ n < 8):          ____        128         
 

 

 

 

 

 

 

 

 

 

d) Largest number x such that x + .5 = .5:            ____ 2-8 = 1/256         
 

 

 

 

 

 

 

 

(Continued on next page)

S EEE MMMMMM 



Login: cs61c-____ 

5/11 

Question 2: Did somebody say “Free Lunch”?! (Continued) ………. (20 pts, 20 min) 

  

           

    (Repeated so you don’t need to flip back and forth) 

 

e) Difference between the two smallest positive values:                                  ____   2-8 = 1/256  _    

 
 
 
 
 
 

 
 
 

 
 

f) Difference between the two largest non- positive values:        ____  2-3 = 1/8         

 

 

 

 

 

 

 

 

 

 

 

g) Number of NaN’s:                    ____       126          

 

 

 

 

 

 

 

 

 

 

h) Using the above format, what is the bit pattern for the floating-point  
number closest to 14.4?                                                                          _____0b0110110011______ 

S EEE MMMMMM 



Login: cs61c-__Answers__ 

6/11 

struct pair { 

  int x; 

  int y; 

}; 

 

struct node { 

  struct node *prev; 

  struct pair *datum; 

  struct node *next; 

}; 

Question 3: Don’t lose your  head  ……………………………………….(50 pts, 25 min) 

We’ve created a simple doubly linked list out of nodes as defined below. Each node contains a pointer 
to a struct pair. The structures are defined as follows. 

                        
 

The first node has its prev field set to NULL. The last node has its next field set to NULL. 
 

a) Fill in the code below to implement insert_before. The function inserts a node in the linked list 

before given_node and sets up the node’s datum. Should new_node be the new head of the linked 

list, adjust head accordingly (a handle to the head is passed as head_h). The function returns a pointer 

to the new node, or NULL if the operation cannot be completed. Assume valid non-NULL parameters. 

struct node *insert_before(struct node *given_node, struct pair p, struct node **head_h) { 

    // Allocate space 

    struct node *new_node = (struct node*) malloc (sizeof(struct node)); 

            

    if (new_node == NULL)  // Check for errors 

 

          return NULL; 

 

    // Setup datum 

     

    new_node->next = given_node->next;    

 

    new_node->prev = given_node->prev; 

 

    if (given_node == *head_h) 

     

          *head_h = new_node; 

             

    else 

          given_node->prev->next = new_node; 

 

       

    given_node->next->prev = new_node;   

 

    return new_node;   

new_node->datum = (struct pair*) malloc (sizeof(struct pair)); 

if(new_node->datum == NULL) 

{ 

    free(new_node) 

    return NULL; 

} 

*(new_node->datum) = pair; 

 



Login: cs61c-____ 

7/11 

void free_list(struct node **head_h) { 

 

    struct node *curr = head_h; 

 

    while (curr != NULL) { 

        free(curr); 

        curr = curr->next; 

 

    } 

} 

 

} 

 

void free_list(struct node **head_h) { 

 

    struct node *curr = *head_h; 

 

 

 

    while (curr != NULL) { 

 

 free(curr->datum); 

 struct node *tmp = curr->next; 

 free(curr); 

 curr = tmp; 

 

 

 

    } 

 

     *head_h = NULL; 

 

 

 

 

} 

} 

Question 3: Don’t lose your  head  (Continued)……………………….. (50 pts, 25 min) 
 

b)  The following free_list function takes a pointer to head (recall head points to the first element in 

the doubly linked list, and head_h is a handle to the head) and frees all memory that was allocated for 

the list. Once the list is freed, free_list must set head to NULL. This function is BUGGY. Assume 

the memory for both the nodes and the datums was allocated from the heap. You should also assume 

free_list is correctly passed the address of head and all datums are non-NULL. 

 
 

Describe all the bugs in the given free_list 

function in the space below. Number each 
bug. 

 
 
 
 
 

1) *head_h 
2) Free then deref 
3) No datum free 
4) No head update 

 
 
 
 
 

c) Implement a correct iterative version of free_list which corrects the bugs found in part b. Please 

re-read the function requirements from part b. You may not need all the space provided. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
  



Login: cs61c-__Answers__ 

8/11 

Question 4: Who needs a compiler? …………………………………(20 pts, 15 min) 

While trying to compile a program for a MIPS processor, the compiler crashes. Before crashing, it 
compiled everything but the following lines of code.  

 

// var and i are signed integers 

// ptr is a pointer to a sufficiently large array of integers 

i = 0; 

while (var != 0) { 

 var = var * 2; 

i++; 

} 

 

if (i >= 0) { 

var = *ptr; 

} 

else { 

var = *(ptr+i); 

} 

 
Finish the job of the compiler by translating the preceding C to MIPS code. 

 

var is stored in $t0, i is stored in $t1, and the pointer ptr is in $t2. Ignore register conventions for 

this problem. We have given you the first instruction and some labels to help guide you. You must 
comment your code! You may not need all the given space. Do not use mult! 

         addu $t1, $0, $0 _        _  # Set i = 0  

 

while: _______ beq $t0, $0, endWhile____  # While var != 0 

 

________sll $t0, $t0, 1___________ # Var *= 2 

 

  ________addiu $t1, $t1, 1_________ # i++ 

 

  ________j while___________________ # loop back and retest 

 

__________________________________ 

 

endWhile: ________slt $t3, $t1, $0__________ # t3 = 1 if t1 < 0, 0 otherwise 

 

________bne $t3, $0, else_________ # if t1 is not >= 0, goto else 

 

__________________________________ 

 

if:  ________lw $t0, 0($t2)____________ # var = *ptr; 

 

________j done____________________ # DO NOT execute the else case 

 

__________________________________ 

 

__________________________________ 

 

else:  ________sll $t3, $t1, 2___________ # Get byte offset 

 

________addu $t4, $t2, $t1________ # Add in the offset 

 

________lw $t0, 0($t4)____________ # var = *(ptr + i); 

 

done:  __________________________________



Login: cs61c-____ 

9/11 

Question 5: Mad about MIPS …………………………………………….. (25 pts, 20 min) 
The factorial of a number n is defined as n*(n-1)*(n-2)*…*1. Factorials can be computed with the 
recursive definition 

f(n) = n * f(n-1), where the base case is f(1) = 1 
 
Implement the factorial function below recursively in TAL MIPS. You may assume that the argument is 
an unsigned integer > 0, and the result can fit in 32 bits so you do not have to handle overflow.  
 

Assume you have a correctly implemented MIPS function mult which returns (in $v0) the value 

$a0*$a1, where $a0 and $a1 are treated as unsigned integers. Follow the hints given by the 

comments. We have given you some code and some labels to help guide you. You must comment 
your code! You may not need all the given space. 
 
 

factorial: ________addiu $sp, $sp, -8________  # Setup 

 

________sw $ra, 0($sp)____________  # save the return address, since this 

                                            function calls a subfunction 

________sw $a0, 4($sp)____________  # we need the original argument after 

                                            we call factorial recursively 

________addiu $v0, $0, 1__________  # set return value for base case 

                                      (note we also use this register  

                                       for the base case comparison) 

________bne $a0, $v0, rec ________ # Handle base case (if n != 1 then  

                                            do recursion) 

  __________________________________ 

 

  __________________________________ 

 

  j done                         # else: this is base case -> return 1 

 

rec:  __________________________________  # Recursive case 

 

  ________addiu $a0, $a0, -1________  # compute argument for recursive call 

 

  jal factorial    # Call factorial 

 

  ________lw $a0, 4($sp)____________  # get the original argument back. 

                                                        (NOTE WE CANNOT ASSUME $A0 WILL 

                                                        STILL BE VALID, EVEN THOUGH WE 

                                                        WROTE THIS FUNCTION!) 

   

  ________add $a1, $v0, $0__________  # set up second argument to multiply: 

                                                        the result of our recursive call 

  __________________________________ 

 

  jal mult     # Call mult (compute n * fact(n-1)) 

 

  __________________________________  # the result we want to return is 

                                                        in $v0 already 

  __________________________________ 

 

done:  ________lw $ra, 0($sp)____________  # restore $ra 

 

________addiu $sp, $sp, 8________   # restore stack 

 

 

jr $ra                              # return 

  



Login: cs61c-__Answers__ 

10/11 

Question 6: It’s all MIPS to me……………………………………………  (35 pts, 25 min) 

A) You are the assembler. Convert the following MAL MIPS code to TAL. Assume the labels are located 
at the addresses specified, and adding additional instructions does not affect these addresses. If a 
MAL instruction is already TAL, simply rewrite it in the TAL column. 
 
Address     MAL                    TAL 
 

 

0x10000000   entry: subiu $sp, $sp, 4 

 addiu $sp, $sp, -4 

 

 

 

 

0x10000004    lbu $t0, 6($sp) 

 lbu $t0, 6($sp) 

 

 

 

 

0x10000008    move $v0, $a0 

                                                             add $v0,$0, $a0  

 

 

 

 

0x1000000C    ble $v0, $0, entry 

 

  blez $v0 entry 

 

 

 

0x10000010    j label 

 j label 

 

 

 

 

0x10000014    sltiu $t0, $t1, 0x8000   ori $at, $0, 0x8000 

          slt $t0, $t1, $at    

         #because sltiu sign extends 

         #0x8000 cannot be represented in  

         #16 bits 

   ...    # Some TAL instructions 

   ...    # which you can ignore 

   ...                                           There is nothing to translate to TAL here! 

 

0x2000000C   label: # Some instruction 

 

 

(This space left intentionally blank. Feel free to doodle.) 

 

 

 

 

 

 

 

 

Problem continued on next page. 

 



Login: cs61c-____ 

11/11 

Question 6: It’s all MIPS to me (Continued) …………………………… (35 pts, 25 min) 

B) Assemble the following TAL code to its machine language representation. You must show all your 
work (below) to receive credit. 
 
0x78000000  start: addu $t0, $t9, $s1  = 0x__03314012_______________ 

 

0x78000004  loop:  lw $v0, -8($sp)  = 0x__8FA2FFF8_______________ 

 

0x78000008             beq   $v0, $0, done  = 0x__10400004_______________ 

 

0x7800000C             nop                =     0x00000000 

 

0x78000010             nop               =     0x00000000 

 

0x78000014             nop          =     0x00000000 

 

0x78000018             nop            =     0x00000000 

 

0x7800001C  done:  j loop    = 0x__0A000001______________ 

 

 

Show your work here. 
 

addu $t0, $t9, $s1 

 

 

 

 

 

 

 

 

 

lw $v0, -8($sp)  

 

 

 

 

 

 

 

 

 

 

beq $v0, $0, done 

 

 

 

 

 

 

 

 

 

 

j loop 

 
 
 


