
v.1

CS61c – MIDTERM EXAM: 3/17/99 D. A. Patterson

Last name __________________________ First name ___________________
Student ID number _________________ Login: cs61c-_______

Please circle the last two letters of your login name.

a b c d e f g h i j k l m n o p q r s t u v w x y z
a b c d e f g h i j k l m n o p q r s t u v w x y z

Discussion section meeting time___________ TA's name _________________
(Sorry to ask this next question, but with almost 400 students, there may be a wider range of behavior.)
The student on my left is __________________________ login cs61c-_________
The student on my right is __________________________ login cs61c-_________

You are allowed to use one 8.5” x 11” double-sided handwritten page of notes. No calculators! This
booklet contains 9 numbered pages including the cover page plus photocopied pages from COD. Put all
answers on these pages, please; don't hand in stray pieces of paper. The exam contains 8 substantive
questions, plus question 0, the box immediately below and one extra credit question. You have three
hours, so relax – this exam isn't worth having a heart failure over. Good luck!

I certify that my answers to this exam are all my own work. If I am taking this exam early, I
certify that I shall not discuss the exam questions or answers with anyone until after the
scheduled exam time.

 Signature _____________________

Question Name Time (minutes) Max Points Your points

0 Signin 0 -1 to 0

1 Overflow 5 6

2 Register Size 5 2

3 Pliable Data 10 7

4 Interrupt 10 4

5 Network Address 10 4

6 Asm to HLL 15 7

7 Shifty 10 8

8 Compile by hand 20 12

9 Extra Credit 0 (1)

Total 85 50

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Signin Question (-1 point if not followed): Fill out the front page correctly and write your login at the
top of each of the pages. Circle your login initials so we can read them.

Overflow Question (6 points)[5 minutes]:

Here are two bit strings in hexadecimal:

0x7f6cbcef and 0xff70e1ab

Will overflow occur when you add them up if they are:

a) unsigned integers?
b) signed integers in two's complement?
c) single-precision IEEE floating point?

For each case, give reasons why or why not.

a. (2 points) [unsigned] Yes / No Why?

b. (2 points) [signed] Yes / No Why?

c. (2 points) [float] Yes / No Why?

Register Size Question (2 points)[5 minutes]:

MIPS was invented in 1985 with 32 integer registers. According to Moore's Law, named after Intel
founder Gordon Moore, the number of transistors per microprocessor doubles every 1.5 years. Thus,
microprocessors could have 1000 times the number of transistors in 2000 as they could in 1985. It would
seem that we could easily build microprocessors with, say, 256 registers.

Select all the reasons why MIPS has not increased the number of integer registers from 32 to 256.

a. There is no need for more than 32 registers, as compilers have difficulty using the 32 registers in
the MIPS architecture now.

b. Due to the importance of binary compatibility, new MIPS processors must be able to execute old
MIPS instructions, and it would be very hard to find room for 256 registers in the original MIPS
instruction format.

c. 32 registers are much smaller than 256 registers, and since smaller is faster, the 32 registers
makes it easier to build fast microprocessors than if there were 256 registers.

d. Moore's Law applies to Intel microprocessors, not MIPS microprocessors, hence the hypothesis is
false. The MIPS chip would be too expensive if it had 256 registers.

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Pliable Data Question (7 points)[10 minutes]:

Given the bit pattern:
10000000 00000000 00000000 00000000
Answer the following questions.

Note: here are some numbers that may prove useful:
232 = 4,294,967,296
231 = 2,147,483,648
230 = 1,073,741,824

a. (2 points) Can this bit pattern represent a two's complement integer? Yes / No

If so, what does it represent? __
If it cannot represent a two's complement integer, why not?

b. (2 points) Can this bit pattern represent an unsigned integer? Yes / No

If so, what does it represent? __
If it cannot represent an unsigned integer, why not?

c. (3 points) Can this bit pattern represent a MIPS instruction? Yes / No

If so, what does it represent? __
If so, which register (using register numbers $0, $1, $2, ..., $31) or memory location (using the
notation Memory[register + number]) has a new value as a result of this instruction?_________

If it cannot represent a MIPS instruction, why not?

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Interrupt Routine Question (4 points)[10 minutes]:

Some printings of Appendix A have this code for a simple (not re-entrant) interrupt routine which prints
an exception error message if the exception code (bits 5 to 2 of the Cause register) is 8 or greater:

.ktext 0x80000080
 sw $a0, save0

sw $a1, save1
mfc0 $k0, $13 # Move Cause into $k0
mfc0 $k1, $14 # Move EPC into $k1
slti $v0, $k0,0x44 # Ignore interrupts (exception in bits 5 to 2 is < 8)
bne $v0, $0, done
move $a0, $k0 # Move Cause into $a0
move $a1, $k1 # Move EPC into $a1
jal print_excp # Print exception error message

done: lw $a0, save0
 lw $a1, save1
 addiu $k1, $k1, 4 # Do not re-execute faulting instruction
 rfe # Restore interrupt state
 jr $k1

.kdata
save0: .word 0
save1: .word 0

There is at least one bug in the code from the book. From the options below, select all that are bugs: (if
none of these are bugs, don't pick any of a to e)

a. It uses $k0 and $k1 without saving and restoring them, as it did for $a0 and $a1.

b. The hex number 0x44 in the slt instruction (to test if exception code field is less than 8).

c. The interrupt routine uses $ra ($31) without saving and restoring it, as was done for $a0 and $a1.

d. addiu $k1,$k1,4 (the address in EPC already points to the instruction following the faulting
instruction, so this instruction is unnecessary)

e. jr $k1 (jr must use register $31)

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Network Address Question (4 points)[10 minutes]:

The networking community apparently is afraid of hexadecimal notation. As a result, they invented a
new notation to represent a 32-bit number. Their notation is:

a.b.c.d

where a, b, c, and d are all decimal numbers between 0 and 255. The unsigned 32-bit number
represented by the notation is:

(a x 224) + (b x 216) + (c x 28) + d
Thus

255.0.255.0
represents the bit pattern

11111111 00000000 11111111 00000000two

This notation is the way they number "Internet Protocol" (IP) addresses.

a. (1 point) What is the 32-bit hexadecimal number equivalent to this IP address 128.32.39.124?

0x___________________________

b. (3 points) One question for Internet Protocols is whether an IP address is local (nearby) or not local
(you must go across the Internet). To specify locality, users must specify a mask, also using this network
notation. To answer the question of whether a new address is local or not, the test for locality is

((local IP address) AND (mask)) == ((new IP address) AND (mask))

If they are equal, then the new address is local.
(In case you are interested, the official name of the mask is Subnet Mask.)

Suppose the following network addresses are local:
128.32.39.120
128.32.39.121
128.32.39.122
128.32.39.123
128.32.39.124
128.32.39.125
128.32.39.126
128.32.39.127

All other network addresses are not local. For example, the IP address 128.32.39.33 is not local.

What mask is needed to make these eight IP addresses local and all others not local?

Use the IP address notation: ________ . ________ . ________ . ________

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Assembly to HLL Question (7 points)[15 minutes]:

Below are several assembly language instructions or operands, including some from MIPS:

1. Add instruction (add, addu in MIPS)
2. Address
3. AND instruction (and in MIPS)
4. Byte data transfer (lbu, sb in MIPS)
5. Comparison instructions (slt, sltu in MIPS)
6. Conditional branches (beq, bne in MIPS)
7. Immediates
8. Load (lw, lb, lbu in MIPS)
9. Memory
10. MIPS convention for registers $a0, $a1, $a2, $a3
11. MIPS convention for registers $v0, $v1
12. MIPS instructions: add.d, sub.d, mult.d, div.d
13. MIPS instructions: add.s, sub.s, mult.s, div.s
14. MIPS jump and link instruction jal
15. MIPS jump register instruction jr
16. Multiply instruction (mul, mulu in MIPS)
17. OR instruction (or in MIPS)
18. Registers
19. Shift instructions (sll, srl in MIPS)
20. Subtract instruction (sub, subu in MIPS)
21. Store (sw, sb in MIPS)
22. Unconditional Branch (j in MIPS)

Associate the high-level language operators or concept below (listed in alphabetical order a to s) with the
most appropriate assembly language instruction or operand (1 to 22 above) by filling in the blank with
the number. You can use the same assembly language instruction or operand more than once.
In 3 cases there is room for 2 associations. If there is no such correlation, write NONE.

______a. Arguments for Functions or Procedures
______b. Arrays
______c. C & operator (binary version: e.g. a & b)
______d. C & operator (unary version: e.g. &a)
______e. C * operator (binary version: e.g. a * b)
______f. C * operator (unary version: e.g. *a)
______g. C <<, >> operators
______h. C goto statement
______i. C if-then statement
______j. C pointers
______k. C relations <, >=
______l. C relations ==, !=
______m. C return statement
______n. C while statement
______o. Character variable (char in C)
______p. Constants
______q. Declaration of variable type
______r. Function Calls (e.g. f(a,b))
______s. Operations on variables declared as float in C

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Shifty Question (8 points)[10 minutes]:

Imagine that there is a MIPS instruction:
 sllv rd, rt, rs
that causes the bits in register rt to be left-shifted by the amount indicated in register rs, and the result is
to be put into register rd. Likewise, imagine that there are similar instructions called "srlv" and "srav".
Each corresponds to one of the shift instructions you are used to, except that the shift amount is specified
in a register rather than as an immediate.

Using these new variable shift instructions, write a MIPS function called "RightRotate." It accepts
two arguments:

$a0 contains the bit string to be rotated.
$a1 contains the number of bits by which to rotate the string. (Assume that $a1 contains a positive

integer between 0 and 31: 0 <= $a1 <= 31.)

For example, rotating to the right by a single bit is shown in the diagram below:

Before: 11111111 00000000 11111111 00000000

After: 01111111 10000000 01111111 10000000

Your function should adhere to all function conventions and return properly with the rotated result in
the proper register. Use comments to document the code.

(Hint: The optimal answer takes just six instructions, but answers with more instructions can still get
full credit.)

Label Instruction Comment

RightRotate:

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Compile-by-Hand Question (12 points)[20 minutes]:

One way of doing error detection on the Internet is to use a checksum. The idea is to add up all the
words that are transmitted and then transmit the result of that sum, and then check the data and the
sum when it arrives. We actually return the negative of the sum minus one (which inverts every bit and
is called the one's complement, in case you are interested.) The checksum is inverted to make sure that
sending all 0s is not considered a valid message, which is a common error condition. Below is a C
program which accomplishes such a task.

Your job is to translate the C program into a MIPS program. Since it's an Internet program, we want it
to be as short and fast as possible. So minimize the amount of stack usage and amount of
instructions as much as you are able to; that is, only save the minimum necessary registers.

Write the MIPS program following the proper MIPS register conventions, and use comments to
document the code. (You can use the back or this page or part of the next page for space if necessary)

int checksum (int start, int frame[]) {
/* frame[] is the array that contains pointers to data we want to send.
start is guaranteed to be less than 512.*/

 int sum, result, x;
 int max_length = 512;
 result = 0;
 sum = 0;

 for (x = start; x < max_length; x++) {
 result = getdata(frame[x]); /* don't write getdata, just call it */
 sum = sum + result;
 }

 return ((-sum) - 1);
}

CS61c-Midterm, Spring 1999 Your login name: CS61c-_____

Extra Credit Question (1 bonus point)[0 minutes]:

Given: a semicircle of radius 1; take two points: one with coordinates
(0,t)-- t up the Y axis, and the other one t up along the semicircle
(starting at (0,0)). Connect these two points with a line.

Question: Find x(t) - the intersect of this line with the x-axis as t
goes to zero.

(0,t)
t

x(t)
(2,0)

