
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2016 Instructors: Vladimir Stojanovic, Nicholas Weaver 2016-02-25

L J

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...	

Last Name

First Name

Student ID Number
CS61C Login cs61c-

The name of your SECTION TA (please circle)

Alex | Chris | Howard | Jack |
Jason | Rebecca | Stephan | William

Name of the person to your LEFT

Name of the person to your RIGHT

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)
• This booklet contains 9 numbered pages including the cover page.
• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats & headphones.

Place your backpacks, laptops and jackets under your seat.
• You have 110 minutes to complete this exam. The exam is closed book; no computers, phones, or

calculators are allowed. You may use one handwritten 8.5”x11” page (front and back) of notes in addition to
the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your
answer within the space provided.

 Q1 Q2 Q3 Q4 Q5 Q6 EC Total
Points
Possible

10 10 20 25 20 20 ?? 105

SID: _________________

2/10

Corrections

Q3:
Assume arr -> $a0
 n -> $a1
 min_val -> $a2

The loop should be:
loop:
beq ____________
lw $t1, ______
slt $t2, _____, ____

j loop

Q6.
a.== and != are considered conditionals

SID: _________________

3/10

Q1: Instructors keep their students aligned (10 points)

Consider the C code below. Assume ints and pointers are 4 bytes in size. Remember that C structs
are densely packed, meaning their elements are contiguous in memory, and that structs may include
padding at the end for alignment. Each struct is located at a memory address that is a multiple of
the size of its largest element.

#include <stdio.h>
#include <stdlib.h>

typedef struct {
 char *name;
 unsigned int id;
 char grade;
} Student;

int main(void) {
 Student *students = malloc(2 * sizeof(Student));
 students[0].name = "Oski Bear";
 students[0].id = 12345;
 students[0].grade = 'A';
 students[1].name = "Ken Thompson";
 students[1].id = 5678;
 students[1].grade = 'A';

 printf("students: %p\n", students);
 printf("Address of students[0]: %p\n", &(students[0]));
 printf("Address of students[0].id: %p\n", &(students[0].id));

 printf("students + 1: %p\n", students + 1);
 printf("Address of students[1].grade: %p\n",
 &(students[1].grade));

 return 0;
}

a) Fill in the blanks in the program’s output below. Assume that the region of memory on the heap

allocated by the call to malloc starts at address 0x1000. Also, remember that C will print pointer
values and memory addresses in hexadecimal notation.

students: 0x1000
Address of students[0]: ______________
Address of students[0].id: ______________
students + 1: ______________
Address of students[1].grade: ______________

b) True | False The address of the students pointer is less than its value,
i.e. &students < students

SID: _________________

4/10

Q2: This tree question needs acorny pun (10 points)

Write a function to sum up the values and free a tree of arbitrary size constructed using the
tree_node struct as defined. Each node can have an arbitrary number of children. Assume that
there will always be a valid pointer in the location of children.

struct tree_node {

 int value;

 struct tree_node ** children;

 int num_children;

}

int sum_and_free_tree(struct tree_node * root) {

 int i, sum;

 if (root == NULL) { // This is equivalent to being stumped

 return 0;

 }

 sum = ___;

for (i = ____________;

 ____________;

 ____________) {

 ___;

 }

 free(___);

 free(___);

 return sum;

}

SID: _________________

5/10

Q3: A filter in the blank question (20 points)

Convert the filter_array function, which counts the number of elements greater than min_val in
the array and returns an integer, to MIPS assembly. You may not need all of the lines, but you should
try to use as few lines as possible.

int filter_array(int* arr, size_t n, int min_val) {

 int count = 0, i;
 for(i=0; i < n; i++){
 if(arr[i] > min_val)
 count++;
 }
 return count;
}

filter_array:

 addiu $sp, $sp, ____

 addiu $s0, $zero, 0 # We’ll store the count in $s0

 addiu $s1, $zero, 0 # We'll store i in $s1

 addiu $t0, $a0, 0

loop:

 beq ____________

 lw $t1, ______

 slt $t2, _____, ____

 j loop

done:

 addiu $sp, $sp, ____

 jr $ra

Example:
int* p = (int*) malloc(sizeof(int)*3)
p[0] = 1
p[1] = 2
p[2] = 3
printf("%d\n", filter_array(p,3,1))

Output: 2

SID: _________________

6/10

Q4: Have you seen this MIPStery before? (25 points)

The following is a recursive function that saves its arguments and return address on the stack as it
executes.

0x4000
0x4004
0x4008

0x400C
0x4010
0x4014
0x4018
0x401C
0x4020
0x4024
0x4028
0x402C
0x4030
0x4034

mystery:
 bne $a0, $0, recurse
 li $v0, 1
 jr $ra
recurse:
 addiu $sp, $sp, -8
 sw $ra, 0($sp)
 sw $a0, 4($sp)
 addiu $a0, $a0, -1
 jal mystery
 lw $ra, 0($sp)
 lw $a0, 4($sp)
 addiu $sp, $sp, 8
 mult $a0, $v0
 mflo $v0
 jr $ra

a) If the function is called with the argument $a0 set to 5, what values will be in registers $a0 and $ra

before you return from the base case?

SID: _________________

7/10

b) What does the stack look like at the beginning of the base case?

Write your answers in the table below. Assume that, when the function is first called, $a0 is set to
5 and $ra is set to 0x1000. Remember that the stack starts at the top and expands downward.
Each box is one word, and you only need to fill in the box with the hexadecimal value.

c) In a sentence, what does this function do? Assume that $a0 is unsigned.

SID: _________________

8/10

Q5: MIPS Instructions Per Second (20 points)

Assume $a0 contains some positive integer, and $a1 contains the address to the start of an integer
array. The numbers on the left are line numbers; they aren't related to the address of each line, and
the address of the instruction on line 0 is 0x00000000. Consider the following MIPS code and its
instruction format representation:

0 add $t0 $a0 $0 <=> 0x00804020
1 add $t1 $a1 $0 <=> __________
2 LabelA: add $t2 $0 $0 <=> 0x00005020
3 LabelB: beq $t0 $0 END <=> __________
4 LabelC: addi $t0 $t0 -1 <=> __________
5 lw $t3 0($t1) <=> __________
6 ____________ <=> 0x014b5020
7 addi $t1 $t1 4 <=> 0x21290004
8 ____________ <=> 0x08000003
9 END: add $v0 $t2 $0 <=> 0x01201020

a) Convert the following lines to their machine code representation. Write your representation in

binary. Each of the boxes is divided into 8 sections of 4 bits each; please format your answer
accordingly. Line 1 is given as an example.

b) Convert the following lines from machine code into their MIPS instruction.

 6) __________________________________

 8) __________________________________

c) In a sentence or two, describe what this function does.

 0000 0000 1010 0000 0100 1000 0010 0000

SID: _________________

9/10

Q6: Mishmash, Hodgepodge, Potpourri (20 points)

a) Implement a function that only uses bitwise operations to return true if the most significant byte of

a 16-bit unsigned integer is different from its least significant byte. For example, this function
returns false for 0x1A1A but true for 0x1A1B. No conditionals or loops are permitted.

int f(uint16_t n) {

 return ___________________________;

}

b) What is the output of the following snippet of code? %d prints a signed integer and %u prints an

unsigned integer.

int main(){
 int8_t x = -1;
 uint8_t y = 255;

 printf("===begin===\n");
 printf("i. %u\n", (uint8_t) x--);
 printf("ii. %u\n", (uint8_t) x);
 printf("iii. %u\n", ++y);
 printf("iv. %u\n", y);

 printf("===break===\n");

 uint8_t z = 255;
 printf("v. %d\n", (int8_t) z);
 printf("vi. %u\n", (uint8_t) z);

 z -= 256;
 printf("vii. %d\n", z);
 printf("===end===\n");
}

c) Fill in the blank cells with the characteristics of each table:

 Symbol Table Relocation Table

What phase(s) is it written to?
Fill in with one of the CALL stages.

What phase(s) is it read from?
Fill in with one of the CALL stages.

Why would you save a label into this
table?

Fill in your answer
here:
===begin===

i.

ii.

iii.

iv.

===break===

v.

vi.

vii.

===end===

SID: _________________

10/10

d) The following questions refer to the job of the loader. Circle true or false.

i. True | False Creates an address space for the program

ii. True | False Reads the object file to determine the size of text and data segments

iii. True | False Initializes all machine registers to 0

iv. True | False Copies the instructions from the executable file into the stack

v. True | False Is currently implemented as part of the OS

Extra Credit (?? Points): What does the following line of code do in C?

C++ + C++

