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Hello Special Agent:  
 
We have a special assignment for you today. This past weekend, 
your Superior Officers, Professor Vladimir Stojanovic and Dr. 
Nicholas Weaver, were reported missing from their offices. We 
suspect that some unknown entity kidnapped them and have 
imprisoned them, and it has come to our attention that we will 
need agents trained in some very specific skills in order to 
find out: 1. Who did this? 2. Where they are being held? and 3. 
How do we get them back? 
 
As such, we, the CS61C staff, are requesting your help. This 
mission, if you choose to accept it, will test the limits of 
what you’ve learned this semester. 
 
Good luck! 
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MT1: Who Did It? 
It looks like at the time of the kidnapping, the professors were working on some top secret material--looks like they were writing some 
questions for the final! A quick pass around their office reveals notes scattered around and questions written on a whiteboard. Perhaps 
when the professors realized they were about to be kidnapped, they managed to sneak in some clues about the identities of the 
abductors.  
 
Stage 1: Finding the Bits and Pieces of Clues	
One of the notes appears to be a hastily scratched series of numbers, various pictures of what looks like the C memory layout, and 
what appears to be the source code of a compiler. Since the kidnappers likely don’t know the difference between a bit and a byte, this 
would be a great place for the professors to have hidden a message about the identities of their kidnappers. You however, being a 61C 
student, know exactly how to crack the code hidden in these questions. 
 
a. What is 0x820 in decimal when read as an unsigned value? 
 

Answer: ____________ 
 
b. What is 0x820 in decimal when read as a signed two’s complement value? 
 

Answer: ____________ 
 
c. For the following statements, circle T for true and F for false. 
 

T / F The output of the compiler stage in CALL cannot contain pseudo-instructions. 
 
T / F The assembler takes two passes over the code in order to solve the “forward   

reference” problem.          
 

T / F The assembler takes two passes over the code in order to resolve absolute  
addresses. 
 

T / F The linker outputs assembly code and takes object code as input. 
 
After you solve the questions, you notice that while they all seem disconnected, their location in the room actually point to a bookcase in 
the office. Upon inspecting the bookcase a bit closer, you notice that one of the books is slightly ajar, so you push it back into place. 
 
Bam! Suddenly a secret passages opens up, leading to another room. Tentatively, you enter, where you see a bunch of pictures that 
looked a bit flipped--perhaps they were transposed? 
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Stage 2: More than a Bit Flipped 
The professors left us with some images, but we need to process them first in order to read them! After trying 
the basic transpose algorithm from lab, we realized that it needed to be slightly modified. Implement this new 
block transpose algorithm in order to continue the search for the professors. 
 
/* Given a Matrix of square feature blocks that are  
* 2 by 2 stored as a serialized array: 
*   [ A1,A2,B1,B2,E1,E2, 
*     A3,A4,B3,B4,E3,E4, 
*     C1,C2,D1,D2,F1,F2, 
*     C3,C4,D3,D4,F3,F4 ] 
* The block transpose of this matrix would be: 
*   [ A1,A2,C1,C2, 
*     A3,A4,C3,C4, 
*     B1,B2,D1,D2, 
*     B3,B4,D3,D4, 
*     E1,E2,F1,F2, 
*     E3,E4,F3,F4 ] 
* blocks_r is the number of blocks in a row 
* blocks_c is the number of blocks in a column 
* b is the width/height of a block 
* dst is a pointer to the destination array 
* src is a pointer to the source array */ 
 
void block_transpose( int blocks_r, int blocks_c, int b, int *dst, int *src ) { 
   int width =  ___________________________________; 
   int height =  ___________________________________; 
   for (int i = 0; i < blocks_c; i++) {                                                                                                                       
       for (int j = 0; ___________________________ ) { 
           int src_start = _______________________________; 
           int dst_start = _______________________________; 
           for (int y = 0; y < b; y++) {                                                                                                                      
               for (int x = 0; ___________________________) { 
                   int dst_elem = ___________________________________; 
                   int src_elem = ___________________________________; 
                   dst[dst_start + dst_elem] = src[src_start + src_elem]; 
               } 
           } 
       } 
   } 
} 
 
After you fill out the code, you realize there is a single file on the desktop called SUPER_SECRET_FILE.png. You write some code to 
load this image into a matrix, and you run it through your program. The output is an image, with just a single phrase on it: Not yes. 
 
Who could this possibly refer to? Before you have any time to ponder the complicated possible implications of this phrase, a popup 
appears on the computer. Some code appears, as well as an image somewhat resembling a tree. Perhaps this is a message from our 
Professors? 
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Stage 3: Held on Charge of Tree-son?	
Looking at the screen, it seems like Dr. Weaver was writing code for the search method of a binary search 
tree, but he was whisked away before he could finish translating it to MIPS. Here is the original C function: 
 

struct bst { 
 const char* str; 
 struct bst* left; 
 struct bst* right; 
}; 
 
int search(const char * check, struct bst** root) 
{ 
 if (*root == NULL) 
  return 0; 
 
 char c, r; 
 const char *ref = (*root)->str; 
 for (int i = 0; (c = *(check+i)) !=0 | (r = *(ref+i)) != 0; i++) { 
  if (c < r) 
   return search(check, &((*root)->left)); 
  if (c > r) 
   return search(check, &((*root)->right)); 
 } 
 return 1; 
} 
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a. Complete the search function below in MIPS. $a0 holds the address of the string you want to check and $a1 
holds the address of the root pointer of a well-formed binary search tree. Strings will only consist of 
lowercase letters with a null terminator at the end. Assume that uninstantiated pointers have a value of 0. 

 
              Multiple Choice: Circle answer 

search: 
 addiu $sp $sp  -8      #prologue 
 sw $ra    0($sp) 
 sw  $s0    4($sp) 
 
 add  $v0 $0 $0 
 lw $s0    0($a1) 
 beq   _____1._____ 
 lw  $t5    4($s0) 
      add  $t6 $a0 $0 
 lw  $t7    0($s0) 
loop:  
 lb  _____2._____    
 lb _____2._____ 
 ________3.________ 
 ________4.________ 
 slt  $t3 $t1 $t2  
 bne  _____5._____ 
 bne _____6._____ 
 bne _____7._____ 
 li $v0    1   
 j  done 
left:  
      lw $t5    4($s0)     
 sw $t5    0($a1) 

jal search 
 _____8._____ 
right: 
 _____9._____ 
 sw $t5    0($a1) 
 jal search 
done: 
 _______10.________    #epilogue 
 lw $ra     0($sp) 
      lw  $s0     4($sp) 
 addiu $sp $sp 8  
 jr  $ra 
 

1. A. $a1 $0 done 
B. $v0 $0 done 
C. $s0 $0 done 
 
 

2. A. $t1 0($t6) , $t2, 0($t7) 
B. $a0 0($t1) , $a1, 0($t2) 
C. $t1 0($a0) , $t2, 0($s0) 
 
 

3. A. sub $t1 $t1 $t2 
B. addiu $a0 $a0 1 
C. addiu $t6 $t6 1 
 
 

4. A. addiu $t7 $t7 1 
B. add $t2 $0 $0  
C. addiu $s0 $s0 1 
 
 

5. A. $t1 $0 left 
B. $t3 $0 left 
C. $t5 $0 left 
 
 

6. A. $t2 $t0 right 
B. $t1 $t2 right 
C. $t5 $0 right 
 
 

7. A. $t1 $0 loop 
B. $t1 $0 done 
C. $t1 $t2 loop 
 
 

8. A. beq $v0 $0 done 
B. j  done 
C. blank 
 
 

9. A. add $t5 $t5 8 
B. add $t5 $s0 8 
C. lw $t5 8($s0) 
 
 

10. A. li $v0 $t3  
  B. sw $s0 0($a1) 
  C. blank 
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b. Before the evil villains whisked Dr. Weaver away, he asked them if he could leave a goodbye note. They 
accepted his request. Weaver left this quote behind: “parting is such sweet sorrow” 

 
Imagine $a1 originally began at 0x4000 and $s0 had an initial value of 4. If we search for the word “sorrow”, fill 
in what the stack frame would look like right before our program discovers that it found “sorrow”, using letters a 
- h. The binary search tree of the quote looks like this: 
 

such 
/           \ 

parting           sweet 
               /     \                                        
            is      sorrow 

 
a. Address of first line of prologue   e. Address of “sorrow” struct 
b. Address of first line of epilogue   f.  Address of last line in loop label 
c. Address of “such” struct    g. Address of last line in left label 
d. Address of “parting” struct    h. Address of last line in right label 

 
4 

0x4000 

  

  

  

  

  

  

 
 
c.  Dr. Weaver was not going to go out without a fight. After an epic struggle, the villains won and, to spite our 

valiant professor, changed all of the jal instructions to j, falsely believing that every call to search will now 
cause the stack to never be cleared after the function is completed. Weaver smirked in triumph because he 
knew that there is exactly one word that will not leave stack frames in the stack after you have 
finished searching for it. What is this word? 

 
 

______________________ 
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Stage 4: What a MIPS-terious question...	
The professors have left some MIPS code for you to analyze! Perhaps the final clue to the identities of the 
kidnappers is hidden in this question: 
 

1  add $t0, $a0, $0 
2  add $t1, $a1, $0  
3 
4  addi $t3, $0, 4 
5  addi $s0, $0, 1 
6  addi $s1, $0, 0 
7 
8 L1: beq $t1, $0, Done 
9  lb $t2, 0($t0) 
10  add $t2, $t2, $t3  
11 L2: sb $t2, 0($t0) 
12  subi $t1, $t1, 1 
13  addi $t0, $t0, 1 
14  j L1 
15 
16 L3: beq $s0, $0, Done 
17  addi $s0, $0, 0 
18 
19  la $t0, L2 
20  lw $t1, -4($t0) 
21  addi $t1, $t1, 407552 #407552 = 0x00063800 
22  sw $t1 -4($t0) 
23 
24  add $t0, $a0, $0 #Resets $t0 to the original $a0 
25  add $t1, $a1, $0 #Resets $t1 to the original $a1 
26 
27  j L1 
28 
29 Done: 
30  move $s0, $a0 

 
a. Write the MIPS instruction format representation of line 10 in binary; use the provided box below. Each box 

holds 4 bits. 
 

        

 

 

 

b. Say that $a0 is a pointer to a null terminated string "abc", and that $a1 is set to 3. After this program runs, 
what is the value of the string that $s0 points to? 
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You realize that someone has left a note in the corner of the desk; it seems to say that there is a typo in line 8; 
the line should read: 

L1: beq $t1, $0, L3 
For the last 4 parts of this question, use this new value for line 8 
 
c. When you run this code using the same inputs as in part b, what is the value of $t1 right after line 21 

executes? Write this 32 bit value in binary in the box below; each box contains 4 bits. 
 

        

 

 

 

 

d. In a sentence or two, what does this function do? 
Hint: If you're stuck, trying running the program with $a0 pointing to the null terminated string “cde” 

 
 
 
 

 

 

You notice that there is another piece of paper with a string written on it. Thinking that this string is possibly the final clue you need, you 
pass this string through the program, and you get the output “Agency”. 
 
Thinking this sounded familiar, you take the clues you gathered from stages 2-4, and it hits you--the identity of the kidnappers is (no 
points): 
 

______________________  ______________________  ______________________ 
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MT2: Location -> [REDACTED] 
We now know who did it, but we still have no clue as to the whereabouts of our beloved professors! Luckily, the professors seemed to 
have some prior warning that this was going to happen, and they were writing a complex program that mashed together some natural 
language processing, geolocation, and maps searching algorithms that seems up for this task. Professor Stojanovic was designing 
some custom photonic chips that could handle running this code, but he had to leave it unfinished on his desk - it’s up to you to fill in the 
gaps and finish the hardware. 
 
Scrawled on a piece of paper next to his chip is a cryptic note: “Use your HARBOR to DOCK your BOAT ~ 46.158.42.111”. You realize 
that someone had leaked a terabyte of secret agency transmissions to Wikileaks from the past month, so you decide to fire up your 
project 5 and quickly modify it to collect and match all transmissions associated with that IP address.  
 
Stage 1: Fast String Matching	
Looking through some of the outputted matches by hand, you realize that all of them have encrypted data of 
some sort. In addition, each message sent from the address starts with a prefix: ranging from “lvl0” to “lvl5”. A 
few of them start with something special: “tsso” (which everyone knows is spy speak for “Top Secret Special 
Operation”). It seems like we want to look closely at packets that are either type “lvl5” or “tsso”.  
 
After taking stock of the situation, this is what you’ve gathered: 

• You want to find messages that start with “tsso” or “lvl5”, but not “lvl0” - “lvl4”. Messages will not start 
with any other prefix. 

• The professors left a program called “Distributed Organization of Common Keywords (DOCK)”, which 
takes in messages and an FSM, and returns all messages where the FSM outputs a 1 at the end. 

• DOCK restarts the FSM on each new message, and each message only consists of lowercase 
characters and numbers. 

 
Notation note: If you want to match multiple characters consecutively, you may do this in one transition, but 
each character must output the same value. If there are multiple ways to get from one state to another, you 
may write them all on one arrow and separate them with a ‘/’. For example, if you want to match “abc”, you 
would write “abc”; if you want to match “a”, “b”, or “c”, you would write “a/b/c”. If the input is ‘*’, that means it 
matches anything that has not been matched.  
 
The FSM is missing - please fill in the following FSM so that it outputs a 1 forever when it finds the prefix “tsso” 
or “lvl5”, and outputs a 0 forever otherwise. The FSM should start outputting a 1 at the “o” of “tsso” and the 
“5” of “lvl5”.

 
 

It seems like all of the encrypted data is part of an image of some sort, transferred in pieces over the course of a month so the average 
snooper wouldn’t know to put it together - but Project HARBOR was able to bring all of the messages into one place.  
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We’ve found HARBOR and DOCK, but what could BOAT be referring to? On a whim, you type  into the computer search bar, and 
a splash screen starts up - this must be the program that the professors were working on. An error pops up though, and it reads “Please 
connect the completed Branching-Optimized Asynchronous Transformer and press the Any key”. There is a device next to the I/O port 
that looks like it was made with the MIPS 5-stage pipeline, I guess there’s more work to be done. 
 
Stage 2: If you don’t know what to do next, guess? 
Apparently, the program’s algorithm will have many branches, so we want to minimize the number of cycles 
that branches take to execute. However, instead of a branch delay slot, one of your CS 61C tutors decided to 
design a BTB (Branch Target Buffer) and add it to the Fetch Stage of our standard 5-stage pipeline instead. 
Ignore branch delay slots in this problem. 
 
Every entry in the BTB contains three things: (1) a PC value (2) a predicted “next” PC value and (3) a Valid bit. 
The BTB checks the current PC against (1): if the Valid bit (3) is set, the BTB sets the PC to the predicted 
“next” PC value (2) in the Fetch stage. Otherwise, PC will be set to PC+4 as usual. Our BTB has 4 sets, and is 
Fully Associative.  
 
At the Execute phase of the branch, we find out whether or not the BTB was correct. If it was correct, we do 
nothing. If it wasn’t correct, we flush all instructions incorrectly executed after the branch, and set the PC to the 
correct value. For simplicity, we will not be updating the state of the BTB on a mis-prediction. In reality, 
this is impractical. 
 
a. How many bits is in our BTB, assuming that we only have a 1 bit Valid bit per entry for our 32-bit machine? 
You can assume that PC and next PC are both 32-bits.  
 
 

For the following parts, we will be dealing with a 16-bit machine (address space), with 32-bit registers. The 
first addi instruction starts at address 0x1000. The “line numbers” below are offsets of this address. 
 

+00|          addi $t7, $0, 5 
+04| loop:   lw $t0, 0($s1) 
+08|          andi $t1, $t0, 1 
+0c|          bnez $t1, next 
+10|          bgt $t0, $t7, A 
+14|          addi $t0, $t0, 1 
+18|          j B 
+1c| A:      addi $t0, $t0, -1 
+20| B:      sw $t0, 0($s1) 
+24| next:   subi $s1, $s1, 4 
+28|       bne $s1, $s0, loop 

 
Here is the initial state of our BTB: 
 

Valid Current PC Predicted Address 

1 0x100c 0x1024 

0 0x1028 0x1004 

1 0x1010 0x101c 
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This is the array: 
 

0x4000 0x4004 0x4008 

0x6 0x1 0xC 

 
$s0 contains 0x4000. $s1 contains 0x4008.  
 
b. In no more than two sentences, describe what the final array will look like (in general, not just on this specific 
code example!) 
 
 

c. Assume that we are running on the standard MIPS pipeline with the BTB. There is no forwarding, and 
branch prediction (the BTB) is in the Instruction Fetch stage. Let’s see how our CPU performs: 
 
 i.  +08|          andi $t1, $t0, 1 

+0c|          bnez $t1, next 
 

There is (circle one of the following):   a ____________ hazard. 
       no hazard. 

 
If you said there was a hazard, how many stalls do we need?   ______ stalls. 

 

ii. How many more cycles would an incorrect branch prediction take than a correct one? ______ cycles. 
 

iii.  +0c|          bnez $t1, next 
  

# of correct branch predictions:  ____________ 
 Average # of stalls per prediction:  ____________ 
 
 

iv.  +10|          bgt $t0, $t7, A 
  

# of correct branch predictions:  ____________ 
 Average # of stalls per prediction:  ____________ 
 
 

v.  +28|       bne $s1, $s0, loop 
  

# of correct branch predictions:  ____________ 
 Average # of stalls per prediction:  ____________ 
 
 

d. If our MIPS code is now self-modifying, what bit should we add to the BTB?  
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Stage 3: Time to Cache Out 
Our hardware will have to work with many multidimensional arrays, so we’ll need to make some 
implementation choices. Consider the 2-dimensional array A referencing 64*32 doubles (8 bytes), which you 
can assume is double-word aligned. In this problem we will be comparing the hit rate of a cache with two 
different ways of representing multidimensional arrays in C, as a 1-D array and a 2-D array of arrays: 
 

// Version A 
sum = 0; 
for (i = 0; i < 64; i++) 
 for (j = 0; j < 32; j++) 
   sum += A[i*32 + j] 

// Version B 
sum = 0; 
for (i = 0; i < 64; i++) 
 for (j = 0; j < 32; j++) 
   sum += A[i][j] 

 
a. Given a 4KB direct mapped cache with 32-byte blocks, what are the best and worst case hit rates for 
version A? 
 
 
 
 
 

Best Case: ____________     Worst Case: ____________ 
 
b. Given the same cache as in part a, what are the best and worst case hit rates for version B? 
 

 
 
 

Best Case: ____________     Worst Case: ____________ 
 
c. Given the same cache as in part a, what is the minimum number of cache blocks that we need in order to 
only have compulsory misses in version A and version B in the best case? 
 
 
 
 
 
Version A: ____________     Version B: ____________ 
 
d. Given a 4KB fully associative cache with 32-byte blocks, what are the best and worst case hit rates for 
version B? 
 
 
 
 
 

Best Case: ____________     Worst Case: ____________ 
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Stage 4: Stop! Datapath is Under Construction	
We’re almost done, but now we need the ability to do floating point calculations in order to compute 
coordinates. Unfortunately, the execute stage of the processor is not complete. The datapath is all set up, but 
the control signals are not connected. In the controller, the output pins for the control signals are there, but 
there’s no logic driving them. 
 
In the datapath diagram below, fill in the labels for each of the mux select inputs with one of the listed control 
signals. Note that there are now two register files: one for integers and one for floating point numbers. There 
are also two functional units: an integer ALU and floating-point unit (FPU). Then fill in the table with the value 
the control signals should take for each of the listed instructions, or X if the signal doesn’t matter. Note that 
the input to the extender mux should be two bits. The specifications for the non-standard FPU instructions are 
given next to the table. 

 
 
Instruction float ext_sel use_imm 

addu    

addiu    

or    

ori    

fadd    

faddi    

 
 
You look at your handiwork, and you’re quite impressed with all the fixes and additions you’ve made to the hardware. You try to flick up 
the power switch and the screen lights up - BOAT is up and operational!  
 
  

Circle the correct label: 
 

1. float  ext_sel use_imm 
 

2. float  ext_sel use_imm 
 

3. float  ext_sel use_imm 
 

4. float  ext_sel use_imm 
 

5. float  ext_sel use_imm 
 

fadd: R-type instruction 
FPRF[rd] ← FPRF[rs] + FPRF[rt] 

Adds two single-precision numbers from the floating-point 
register file and write the result to the floating-point register file. 
 
faddi: I-type instruction 

FPRF[rt] ← FPRF[rs] + FPExt(imm) 
Extend the half-precision immediate to a single-precision 
number. Add it to a single-precision number from the floating-
point register file and write back to the floating-point register 
file. 
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Stage 5: This Question will Float Your BOAT	
You start up the professor locating program, and it prints out two floating-point numbers, which are the latitude 
and longitude of where the professors are being held. The numbers are in IEEE half-precision (16 bit) format.  
 
Convert the half-precision numbers provided below in binary format to their decimal floating point 
representation. Half-precision numbers have 5 bits for exponent and 10 bits for significand. The exponent bias 
is 15. 

0b 0 10100 0010000011      ,       0b 1 10101 1110100100 
 

 

 

 
Success! Looking back at the program output, you see a footnote “Program running in TESTING mode, output only has 7% accuracy. 
Turn on PRODUCTION mode in settings.” That’s too bad, but not the end of the world. You change the mode in the settings and rerun 
the program, but, in dismay, you see that the estimated time remaining is 12 hours. You can’t wait this long; there must be something 
else you can optimize! 
 
Stage 6: Adding Adder Complexity	
Luckily, someone left a sticky note on the screen saying, “TODO: test Adder A and Adder B, current adder is 
way too slow...” 

  
It seems like Professor Stojanovic was debating the merits of two different 8-bit adder designs (each consisting 
of chained full-adder cells), which both take in A and B and output C (labels c0-c7). Add calculations in this 
case do not need to worry about overflow. You also know that the propagation delay for each MUX is 
approximately as long as two full-adder delays. You can assume that a full-adder delay from input to either 
output cout or sum is the same. 
 
a. Does Adder A calculate C correctly?   Yes   No 
   If you selected “no”, state a reason why in two sentences or fewer. 
 
 
 
b. Does Adder B calculate C correctly?   Yes   No 
   If you selected “no”, state a reason why in two sentences or fewer. 
 
 
 
c. Regardless of correctness, which runs in less time?   

Adder A     Adder B 
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Upon choosing the faster and correct adder design, you re-run the program - 11 hours remaining... it would have been too much to 
expect a 24x speedup just by changing the adder design. Poking around, you see a setting called “Location mode: Coarse (200 ft 
radius)”. Might as well give it a shot, you think to yourself. After switching this mode on, the time remaining jumps down to 30 mins - 
makes you wonder how accurately the “Fine” mode would have worked. Regardless, you sit down and wait; after 30 minutes, a printer 
fires up and you read the following:  
 

SEARCH COMPLETED: 29 min, 42 sec.  
LOCATION MATCHED: EVANS HALL BASEMENT 

 
Post-MT2: A Quick and Stealthy Extraction 

As you head towards Evan’s basement, you notice a screen along with a keypad on the door. You attempt to open the door, but it won't 
budge. Suddenly a question appears on the screen ... The only way through that door is by solving the question and entering the 
correct answers in the keypad. 
 
Stage 1: Virtual Memory	
For the following question, assume the following:  

• 28-bit virtual addresses 
• 16MiB Physical Memory with LRU replacement 
• 4KiB Pages 
• Fully associative TLB with 16 entries and an LRU replacement policy 

 
a.  What is the VPN:PO (Virtual Page Number: Page Offset) breakdown for VM? ______:______ 
 

b.  What is the PPN:PO (Physical Page Number:Page Offset) breakdown for Physical memory? 
______:______ 
 

Consider the following code: 
// Let src, dst be char* 
// Assume rand is function initialized with random  
// integers in [ 0, strlen(dst) - 1 ], without repeats 
// max_replacements is an arbitrary number 
for (i = 0; i < max_replacements; i++) { 
 dst[rand[i]] = src[rand[i]] 
} 

 
Assume that only the code and the two char* take up memory, strlen(dst) <= strlen(src),  ALL of code 
fits in 1 page, TLB currently has at least a pointer to the code, the strings are page-aligned (starting on a page 
boundary), and this is the only process running. For simplicity, you can also assume rand does not exist in 
memory – you do not need an entry for the address translation of rand. 
c.  How many page faults would occur after 20 iterations in the ...  
 
 

 

Best Case: ____________     Worst Case: ____________ 
 
d.  How many iterations of the loop can occur before a TLB miss in the ...  
 
 
 
  

Best Case: ____________     Worst Case: ____________  
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After entering in your solutions, the keypad flashes green and the door slides open. “That was weird”, you think to yourself, “what kind 
of secret agency uses a 61C final question for their security prompt?” As you creep along a hallway in the Evans basement, you 
suddenly hear footsteps behind you! You open the door to the nearest office and duck inside.  
 
It's only after you've closed the door that you realize what was written on it: "OpenMP Consultant." Even worse, you hear someone 
approach the door and knock. You quickly flip on the lights, sit behind the desk, and try to appear casual. A No Such Agency agent 
enters and asks for help with OpenMP coding. It looks like you'll have to help her analyze it to avoid arousing any suspicions. 
 
Stage 2: The OpenMP Doctor Is In	
The No Such Agency agent shows you the following code that she's trying to parallelize. You feel a sense of 
déjà vu as you look over it. 
 

   typedef struct {     typedef struct {  
    char *src_ip;      char *src_ip; 
    int src_port;      int src_port; 
    char *dest_ip;      char *dest_ip; 
    int dest_port;      int dest_port; 
    char *cookie;      char *user_name; 
    long timestamp;     long timestamp; 
   } request_t;      } reply_t; 

 
int tuple_matches(request_t *request, reply_t *reply) { 
    return strcmp(request->src_ip, reply->src_ip) == 0 && 
        request->src_port == reply->src_port && 
        strcmp(request->dest_ip, reply->dest_ip) == 0 && 
        request->dest_port == reply->dest_port; 
} 

 
// Assume replies and requests are valid arrays 
request_t requests[num_requests]; 
reply_t replies[num_replies]; 
int num_matches = 0; 
for (int i = 0; i < num_requests; i++) { 
    request_t *request = requests + i; 
    for (int j = 0; j < num_replies; j++) { 
        reply_t *reply = replies + j; 
        if (tuple_matches(request, reply) && 
            abs(reply->timestamp – request->timestamp) <= 10) { 
         num_matches++;  
        }  
    }  
} 
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Version 1 
int num_matches = 0; 
#pragma omp parallel 
{ 
    for (int i = 0; i < num_requests; i++) { 
        request_t *request = requests + i; 
   for (int j = 0; j < num_replies; j++) { 
            reply_t *reply = replies + j; 
          if (tuple_matches(request, reply) &&  
                       abs(reply->timestamp – request->timestamp) <= 10) { 
            num_matches++; 
          } 
        } 
    } 
} 

 
Will this code produce the correct answer? Assume there is always a non-zero number of matches, and circle 
the best response. 
 

Always Correct                Sometimes Correct                    Never Correct 
 
Will this code be faster than the serial version? Circle your response. 
 

Faster than Serial                Not Faster than Serial 
 
 
 

Version 2 
int num_matches = 0; 
#pragma omp parallel for 
for (int i = 0; i < num_requests; i++) { 
    request_t *request = requests + i; 
    for (int j = 0; j < num_replies; j++) { 
        reply_t *reply = replies + j; 
      if (tuple_matches(request, reply) &&  
                    abs(reply->timestamp – request->timestamp) <= 10) { 
            num_matches++; 
        } 
    } 
} 

 
Will this code produce the correct answer? Assume there is always a non-zero number of matches, and circle 
the best response. 
 

Always Correct                Sometimes Correct                    Never Correct 
 
Will this code be faster than the serial version? Circle your response. 
 

Faster than Serial                Not Faster than Serial 
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Version 3 
int num_matches = 0; 
for (int i = 0; i < num_requests; i++) { 
    request_t *request = requests + i; 
    #pragma omp parallel for 
    for (int j = 0; j < num_replies; j++) { 
        reply_t *reply = replies + j; 
        if (tuple_matches(request, reply) &&  
                   abs(reply->timestamp – request->timestamp) <= 10) { 
            num_matches++; 
      } 
    } 
} 
 

Will this code produce the correct answer? Assume there is always a non-zero number of matches, and circle 
the best response. 
 

Always Correct                Sometimes Correct                    Never Correct 
 
Will this code be faster than the serial version? Circle your response. 
 

Faster than Serial                Not Faster than Serial 
 
 
 
Version 4 

for (int i = 0; i < num_requests; i++) { 
    request_t *request = requests + i; 
    #pragma omp parallel for reduction(+:num_matches) 
    for (int j = 0; j < num_replies; j++) { 
        reply_t *reply = replies + j; 
        if (tuple_matches(request, reply) &&  
                   abs(reply->timestamp – request->timestamp) <= 10) { 
            num_matches++; 
      } 
    } 
} 

 
Will this code produce the correct answer? Assume there is always a non-zero number of matches, and circle 
the best response. 
 

Always Correct                Sometimes Correct                    Never Correct 
 
Will this code be faster than the serial version? Circle your response. 
 

Faster than Serial                Not Faster than Serial 
 
 
 
Happy with your help, the agent leaves the room - disaster averted. You look at stage 3 of your plans, and all it says is “???”. Before 
you can start complaining about bureaucracy and vague instructions, your phone buzzes. 
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Stage 3: Mean Time To Final	
a. Agent Jaime Bont is trying to send you vital intelligence, but her messages keep getting dropped and 

garbled. If she wanted to guarantee delivery of her data, what transport layer protocol should she have 
used? ____________ 

 
b. Agent Bont sends a possibly corrupted 8-bit message, 0xFA, that we know uses Hamming ECC format from 

class, along with a right-most bit as a parity over the entire message.  
i. Circle all of the following properties that this format ensures: 

 
    Double Error Detection Triple Error Detection   
Single Error Correction Double Error Correction Triple Error Correction 

None of the above 
 

ii. State the Hamming distance between the received message and the correct message, and give the 
corrected message if necessary and possible.  

 
 p1 p2 d1 p4 d2 d3 d4 p8 

 1 1 1 1 1 0 1 0 

p1 X  X  X  X  

p2  X X   X X  

p4    X X X X  
 

 

Hamming distance: ____________   Corrected message: ____________ or Impossible 
 
c. It turns out that Agent Bont was trying to send us specs on the datacenter. 

i.  Bont reports that their disk drives have no queuing delay, a SCSI interface controller with 1 ms delay, 
a rotation speed of 12,000 rpm, a transfer rate of 20 MB/s, a total of 16,000 cylinders, and an arm 
speed of 4,000 cylinders per 3 ms. On average, how long does it take to read or write 16 KB of data? 
Show work for potential partial credit. 

 
 
 
 

ii.  Does RAID 1 offer concurrent independent writes?  Yes  No 
     Does RAID 5?           Yes  No 

 
iii. There are 8760 servers in this particular datacenter, each with 4 disks having a 0.1% annual failure 

rate. What's the mean time to failure, in hours? Show work for potential partial credit. 
 
        
 
 

No Such Agency is really understaffed, as they assigned only one technician to monitor both their datacenter and the professors' 
captivity. Aside from donuts and Sword Art Online reruns, the tech is also distracted by repairing disk failures.  
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iv. Assuming NSA holds itself to three nines of availability with MTTF from part iv), what's the mean 

time we have to rescue the professors upon a disk failure, to the closest minute? Show work for 
potential partial credit. 

       
 

 
 

All of the pieces are now falling into place, and after a few more steps down the corridor, you’ve finally reached the door to Vladimir and 
Nick’s cell in the Evans basement! Unfortunately, the door is secured by a keypad. You’ll have to enter the correct sequence of letters 
(“A” through “E”) to open the door, and there’s no way you can deduce the code, or even its length. 
 
As you hang your head in despair, you notice something on the floor. It’s an old CS 61C discussion worksheet. There’s a single word 
hastily written on the back of the sheet: “Clickers.” It seems like a long shot, but maybe Nick anticipated his abduction at the beginning 
of the term. Could he have made it so that each letter of the code to open the door corresponded to the most popular clicker answer in 
each lecture, including all of those convergences on the wrong answer? 
 
Stage 4: Breaking Down the Door	
It’s worth a try. You fire up your laptop (like any good CS student, you bring your laptop along with you on a 
rescue mission) and effortlessly hack into the bCourses database to get the 61C clicker response data. It 
contains a file with everyone’s clicker responses over the semester. Each line of the file is in the following 
format: 
 

student_id lecture_number response 
 
a. You decide to write a Spark job and run on it on your super secret cluster to parallelize the analysis of this 

file, so you can get your answer as quickly as possible. Assume that the job would require 30 minutes to run 
on a single machine and that 90% of the job’s work can be parallelized. 

 
At least how many machines do you need to use in your Spark job so that the job will only require 6 minutes? 
Assume that the parallel portion of the work exhibits perfect scaling, i.e. running it on x machines will take 1/x 
as much time to finish. 
 
 
 
 
 
 
 
 
Number of Machines: __________  
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Now, it’s time to write the Spark code. To start, you write the following Python code to total up the number of 
each response type for each lecture, with the goal of converting the input text data to output like so: 

Sample Input : (Student ID, Lecture #, Clicker Response) 
4  1  A 
8  1  B 
15 1  A 
16 2  C 
23 2  D 
42 2  D 
 
Sample Output: ((Lecture #, Clicker Response), Count) 
((1, A), 2) 
((1, B), 1) 
((2, C), 1) 
((2, D), 2) 
 
def parseLine(line): 
 tokens = line.split(' ') 
 return ((tokens[1], tokens[2]), 1) 
 
def addTogether(a, b): 
 return a + b 
 
if __name__ == '__main__': 
 # Assume you have a Spark Context set up 
 clicker_responses = sc.textFile("clicker_data.txt") 
 totals = clicker_responses.___(A)____(parseLine).___(B)___(addTogether) 
 

b. What function(s) can we use in blank (A) in the code above? Circle your response. 
 

map  flatMap  Either map or flatMap Will Work 
 
c. What function(s) can we use in blank (B) in the code above? Circle your response. 
 

reduce reduceByKey  Either reduce or reduceByKey Will Work 
 
d. Assuming parts b and part c are chosen correctly, are parseLine and addTogether correctly implemented 
so that the Spark job will convert the input data to the output? You can ignore the output ordering. 
 

Yes     No 
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e. Now, you want to write code to finish the job and take the output from the previous Spark snippet (assuming 
it is correct) and find the most common response of each lecture. 

 
Sample Input: ((Lecture #, Clicker Response), Count) 
((1, A), 2) 
((1, B), 1) 
((2, C), 1) 
((2, D), 2) 
 
Sample Output: (Lecture #, Most Common Response) 
(1, (A, 2)) 
(2, (D, 2)) 
 

Fill in the blanks in the Python code below to complete the implementation. 
 
def rearrange(arg): 
    return (arg[0][0], (arg[0][1], arg[1])) 
 
def reduce_func(a, b): 
 
    _____________________________________________________ 
 
    _____________________________________________________ 
 
    _____________________________________________________ 
 
    _____________________________________________________ 
 
    _____________________________________________________ 
 
    _____________________________________________________ 
 
if __name__ == '__main__': 
    # Assume we have the output from the previous code in totals 
    most_common_responses = totals.map(rearrange) \ 
                                   .reduceByKey(reduce_func) 
 

 

You input the data, run your code, and type the output into the keypad. With a rumble, the door slides open to 
reveal Professor Stojanovic and Dr. Weaver, ready to make a quick getaway. Congratulations agent, you have 
completed your mission. The Professors owe you one for life! 
 
Remember to fill in the emotional spectrum on the title page. Your debriefing packet will be ready in 5-8 days. 
Thank you for taking CS 61C! 
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