
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2013 Instructor: Dr. Dan Garcia 2013-03-04

 CS61C Midterm 
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name Answer Key

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your LAB TA (please circle) Justin Alan Paul Sagar Sung-Roa Zachary
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• Don’t Panic!
• This booklet contains 6 numbered pages including the cover page. Put all answers on these pages; don’t

hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• You have 120 minutes to complete this exam. The exam is open book, no computers, PDAs, calculators.
• There may be partial credit for incomplete answers; write as much of the solution as you can. We will

deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit
your answer within the space provided. You have 2 hours...relax.

Question 1 2 3 4 Total
Minutes 48 24 24 24 120
Points 30 15 15 15 75

Score 30 15 15 15 75

2/6

1) What is that funky smell? Oh, it’s just Potpourri… (48 min, 30 pts)
Suppose for questions (a)-(d) that we were to modify the MIPS ISA so that it exposed 64 registers
instead of 32, and adjusted the field widths of our R, I and J instruction formats to be able to address all
the registers, but did not change the size of the opcode or shamt fields. Registers and instructions will
remain 4 bytes wide.
 214

a) At most how many instructions can a single beq instruction now reach? ______________________

 None

b) How many more addresses can now be reached from a jal instruction? _____________________

 8
c) How many different R-type instructions can we now have? ________________________________

d) If it costs 256 cents per bit of register memory (yikes!), how much would 512 kibicents
these 64 registers cost, in cents? Answer using IEC notation (e.g,. 4 mebicents). _______________

Questions (e)-(g) concern the IEEE floating point standard. -12.75

e) What float is encoded by the following bits: 0xc14c0000? ___________________
(show all work here)

 2-126 0x00800000

f) What is the smallest positive normalized number? Number: _______ encoded as 0x____________
(show all work here)

g) Write the MAL MIPS function IsNotInfinity to return non-0 if the input is NOT ±∞, 0 if it is ±∞.
 sll
IsNotInfinity: ______ $a0 $a0 1 ### make –∞ and	
 +∞	
 look the same
 xori $v0 $a0 0xFF000000 (or addiu 0x0100 0000)

 jr $ra

Login: cs61c-__ Answers__

3/6

1) What is that funky smell? Oh, it’s just Potpourri… (continued)
h) Complete the below C code so that it obeys its comments. This should work on 1986 hardware,

where ints were only 2 bytes wide, as well on our current 32-bit MIPS machines.
 (sizeof(int)*8)

#define INT_BITS ____________________________________; // # bits in an int
// Rotates (the numeral that p points to) to the left by 0<=n<INT_BITS.
// “rotate” means the leftmost bits fall off the left, appear on the right

void drotL(unsigned int *p, unsigned int n) {

 *p = (*p << n) | (*p >> (INT_BITS-n))
 ___ ;
}

i) You define a short recursive MIPS procedure foo that is statically linked by two executables.
Can the binary for the procedure foo be different in the two executables? Why, or why not?

They CAN be different because the address of foo (which will be a part of the
recursive jal call) depends on where the code is placed.

j) We want to represent 10-digit phone numbers using bits. Assume that any combination of 10 digits is

legal. One scheme is to represent each digit with a certain number of bits, then repeat it 10 times.
What is the minimum number of bits required to represent a phone number using this scheme?

 Ceil(Log2(10))=4 * 10 = 40

k) Using any scheme, what is the fewest number of bits required to “address” all phone numbers?

Log2(10,000,000,000)  Log2(10 billion)  34

l) Consider the C code here, and

assume the malloc call succeeds.
Rank the following values from 1 to 5,
with 1 being the least, right before
bar returns.
Use the memory layout from class;
Treat all addresses as unsigned #s.

foo ___3___

&foo ___5___

FIVE ___1___

&FIVE ___2___

&x ___4___

#include <stdlib.h>
int FIVE = 5;

int bar(int x) {
 return x * x;
}

int main(int argc, char *argv[]) {
 int *foo = malloc(sizeof(int));
 if (foo) free(foo);
 bar(10); //  snapshot just before it returns
 return 0;
}

4/6

2) “free at last, thank gosh we are free at last…” (24 min, 15 pts)

We wish to free a linked list of strings (example below)
whose nodes are made up of this struct. Complete the
code below; we have started you off with some filled in.
You may use fewer lines, but do not add any.

 $a0 $0
FreeLL: beq _____, _____, NULL_CASE
 addiu $sp $sp -8

 sw $ra 4($sp)

 sw $a0 0($sp)

 lw $a0 4($a0)

 jal FreeLL

 lw $a0 0($sp)
 lw $a0 0($a0)

 jal free

 lw $a0 0($sp)

 jal free
 lw $ra, 4($sp)

 addiu $sp $sp 8

NULL_CASE: jr $ra

love I CS61C

head

midterms!

// Assume compiler packs tightly
struct node {
 char *string;
 struct node *next;
};

void FreeLL(struct node *ptr) {
 if (ptr == NULL)
 return;
 else {
 FreeLL(ptr->next);
 free(ptr->string)
 free(ptr);
}

Login: cs61c-__ Answers__

5/6

3) “Cache, money. Dollar bills, y’all.” (24 min, 15 pts)
Suppose we have a standard 32-bit byte-addressed MIPS machine, a single direct-mapped 32KiB
cache, a write-through policy, and a 16B block size.
 17:11:4
a) Give the T:I:O breakup. _________________ 16*8(data)+17(tag)+1(valid) = 146
b) How many bits are there per row on the cache? _______________________________________

Use the C code below and the description of the cache above to answer the questions that follow it.
Suppose that the only memory accesses are accesses and stores to arrays and that all memory
accesses in the code are valid. Assume A starts on a block boundary (byte 0 of A in byte 0 of block).

#define NUM_INTS 32
#define OFFSET 8192 // 8192 = 2^13

int rand(int x, int y); // returns a random integer in the range [x, y)

int main(){
 int A[NUM_INTS + OFFSET]; // Assume A starts on a block boundary

 // START LOOP 1
 for (int count = 0 ; count < NUM_INTS ; count += 1) { // count by 1s
 A[count] = count; // ACCESS #1
 A[count + OFFSET] = count+count; // ACCESS #2
 }
 // END LOOP 1

 // START LOOP 2
 for (int count = 0 ; count < NUM_INTS ; count += 4) { // count by 4s now
 for (int r = 0 ; r < 4 ; r++) { // …but do it 4 times
 printf(“%d”, A[rand(count, count+4)]);
 }
 }
 // END LOOP 2
}

 0% compulsory, conflict
c) Hit rate for Loop 1? ______________ What types of misses are there? _______________________

 75% conflict
d) Hit rate for Loop 2? ______________ What types of misses are there? _______________________

Questions (e), (f), and (g) below are three independent variations on the original code & settings.
 100%

e) If the cache were 2-way set associative, what would be the hit rate for Loop 2? _________________
(assume the standard LRU replacement policy)
 100%

f) If instead we removed the line labeled ACCESS #2, what would be the hit rate for Loop 2? ________
 32

g) Instead, what’s the smallest we could shrink OFFSET to maximize our Loop 2 hit rate? ___________
(assume we still need to maintain the same functionality)

6/6

4) You thought YOUR numbers were big? Try these! (24 min, 15 pts)
 We’d like to represent infinitely long positive integers. We decide to use an array of DIGITs, where a
DIGIT is an unsigned 8-bit quantity specified by uint8_t. We’d also like to know where the number
ends, so we’ll declare 0xF to be the terminator (like 0x0 is for strings). Let’s see how we’d store “57”:

a) Fill in addDIGIT to make it work properly. The idea is that we’ll build this small black

box that can add one DIGIT as shown below, then to add the whole thing we’ll
virtually hook many of these together. This block simulates what we do when we are
adding, say, the tens column on the right: dA is 2, dB is 7, carryIn from the ones
column is 1, carryOut for the hundreds column gets 1 and the return value is 0.

typedef uint8_t DIGIT;
DIGIT addDIGIT(DIGIT dA, DIGIT dB, DIGIT carryIn, DIGIT *carryOut) {
 dA + dB + carryIn;
 uint8_t tempSum = ____________________
 *carryOut = tempSum / 10;

 tempSum % 10;
 return _______________________________
}

b) Now, let’s use addDIGIT to write the full adder! Unfortunately, there are bugs; indicate your changes

to fix the code in the table below. We use two helpers, sizeofDIGIT(), which would return 2 for
the “57” example above, and safeDigit() which takes an array A, index and length returning
A[index] if we’re still in array bounds (index < length), and 0 otherwise. A, B are never NULL.

01 DIGIT *add-DIGITs(DIGIT *A, DIGIT *B) {
02 unsigned int lenA = sizeofDIGIT(A);
03 unsigned int lenB = sizeofDIGIT(B);
04
05 DIGIT sum[max(lenA,lenB)]; /* make space for the answer */
06 DIGIT carryIn = 0, carryOut;
07 int i;
08 for(i=0 ; i < max(lenA,lenB) ; i++) {
09 sum[i] = addDIGIT(safeDigit(A,i,lenA), safeDigit(B,i,lenB), carryIn, carryOut);
10 carryIn = carryOut;
11 }
12
13 sum[i] = 0xF; /* terminator */
14 return sum;
15 }

Byte 2 1 0
Bit 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1

Hex 0 F 0 5 0 7

Line Indicate the fix here and what it is (insertion, deletion, change). All lines not nec needed.
01 Remove dash

05 DIGIT *sum = (DIGIT *) malloc (sizeof(DIGIT) * (max(lenA,lenB)+2));

09 &carryOut

12 if (carryOut) sum[i++]=carryOut;

dA

addDIGIT

dB

carryOut carryIn

 1 1
 1 2 8
+ 7 7
 0 5

