
 University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2013 Instructor: Dan Garcia 2013-05-14

L J
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k m o p

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your SECTION TA (please circle) Justin Alan Paul Sagar Sung-Roa Zachary
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• This booklet contains 9 numbered pages including the cover page.

Put all answers on these pages; don’t hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or calculators.
You may use two pages (US Letter, front and back) of notes and the green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your answer
within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes.

• You must complete ALL THE QUESTIONS, regardless of your score on the midterm. Clobbering only
works from the Final to the Midterm, not vice versa. You have 3 hours... relax.

Question M1 M2 M3 Ms F1 F2 F3 F4 Fs Total
Minutes 20 20 20 60 30 30 30 30 120 180
Points 10 10 10 30 22 23 22 23 90 120

Score

 2/9

M1) Hacker’s Delight (10 pts, 20 min)

We present mystery, a new helper routine for your C programming.
In parts (a) and (b), you’ll show us you know how to use mystery from C.
In parts (c) and (d), you’ll show us you understand its limitations.

mystery: ori $v0 $0 0x0
 beq $a0 $0 done
 la $t0 mystery
 lw $t1 0($t0)
 addiu $t1 $t1 0x1
 sw $t1 0($t0)
 lw $v0 0($a0)
done: jr $ra

a) If you’re at “part (a)” in the C code, show a single call to mystery so that it returns 4.

printf(“Here is mystery returning four … %d\n”, mystery(__________));

b) Complete the documentation of mystery for a fellow programmer. Use good abstraction – don’t
tell the user how it does what it does, just tell them what it does and how it’s to be used.
 “When called with a non-NULL argument arg, the subroutine mystery …

__”.

“When called with a NULL argument, the subroutine mystery …

__”.

“Overall, mystery is a subroutine used to …

__”.

c) We’d like to know if there is a limit to the # of times mystery can be called with a NULL argument
(so that it still does what you described in part b). If there is, state what the limit is and what
happens if it’s called one more time. If there isn’t a limit, write N/A (not applicable) in both blanks.

 “With a NULL argument, mystery may be called at most _____ times. Calling it once more…

__”.

d) We’d like to know if there is a limit to the # of times mystery can be called with a non-NULL
argument (so that it still does what you described in part b). If there is, state what the limit is and
what happens if it’s called one more time. If there isn’t a limit, write N/A in both blanks.

 “With a non-NULL argument, mystery may be called at most _____ times. Calling it once more…

__”.

main() {
 char A[4], char4 = ‘4’;
 int pi[] = { 3, 1, 4, 1, 5, 9 }
 float float4 = 4;
 // part (a)
 … // more code, function calls, etc.
}

 3/9

M2) Cache Money, y’all (10 pts, 20 min)
This C code runs on a 32-bit MIPS machine with 4 GiB of memory and a single L1 cache. Vectors A,B live in
different places of memory, are of equal size (n is a power of 2 and a [natural number] multiple of the cache size),
block aligned. The size of the cache is C, a power of 2 (and always bigger than the block size, obviously).

// sizeof(uint8_t) = 1
SwapLeft(uint8_t *A, uint8_t *B, int n) {
 uint8_t tmp;
 for (int i = 0; i < n; i++) {
 tmp = A[i];
 A[i] = B[i];
 B[i] = tmp;
 }
}

// sizeof(uint8_t) = 1
SwapRight(uint8_t *A, uint8_t *B, int n) {
 uint8_t tmpA, tmpB;
 for (int i = 0; i < n; i++) {

 }
}

Let’s first just consider the SwapLeft code for parts (a) and (b).

a) If the cache is direct mapped and the best hit:miss ratio is “H:1”, what is the block size in bytes? _____

b) What is the worst hit:miss ratio? _____:_____

c) Fill in the code for SwapRight so that it does the same thing as SwapLeft but improves the (b) hit:miss ratio.
You may not need all the blanks.

d) If the block size (in bytes) is a, what is the worst hit:miss ratio for SwapRight? _______:_______

e) We next change the cache to be 2-way set-associative, and let’s go back to just considering SwapLeft.
What is the worst hit:miss ratio for SwapLeft with the following replacement policies? The cache size is C
(bytes), the block size is a (bytes), LRU = Least Recently Used, MRU = Most Recently Used.

LRU and an empty cache MRU and a full cache

_______:_______

_______:_______

 4/9

M3) What is that Funky Smell? Oh, it’s just Potpourri… (10 pts, 20 mins)

a) How many non-negative floats are < 2 ? ___________ (you must show your work above for credit)

b) What’s the biggest change to the PC as the result of a jump on a 32-bit MIPS system? __________________

(answer in IEC format, like 16 kibibytes or 128 gibibytes)

c) Fellow 61C student Ben Bitdiddle was told to write a function count_az
that takes an input string of lower-case letters (only ‘a’ through ‘z’) and
returns an array of the number of occurrences of all letters; a histogram if
you will. The returned array will be zero-indexed and the indices will
correspond to their respective order in the alphabet (i.e. a = 0, b = 1, …, z
= 25). E.g., if the input str is “baaadd”, the output array will look like the
right column of the table on the right. Fix all the errors; we should be able
to call it like this: myAZ = count_az(str); yourAZ = count_az(str);

 1 int count_az(char *str) {
 2
 3 int count[26]; // Create the count array
 4
 5 while(*str) { // Go through the whole string
 6
 7 int index = &str – 0x97; // The 97 is from the MIPS green sheet…
 8
 9 count[index]++; // Increment the appropriate bucket
10
11 str++; // Go to the next character
12
13 }
14
15 free(str); // Free the string storage
16
17 }

index count[index]
0 (for ‘a’) 3

1 (for ‘b’) 1

2 (for ‘c’) 0

3 (for ‘d’) 2

… …

25 (for ‘z’) 0

Line #

Add
Change
Remove Additions / Changes / Removals

 5/9

F1) Madonna revisited: “We Are Living in a Digital World…” (22 pts, 30 mins)

a) Rewrite the following circuit using the minimum number of AND, OR, and NOT gates: _______________

You must show your work above to earn points for this problem.

b) How many n-to-m logic gates (i.e. n bits of input, m bits of output) are there
if we allow our circuit to produce outputs that are 0, 1, or high-Z? _________________

c) You are an intern at a massive hardware firm, working on branch
predictors. Start by predicting branch-not-taken and only switch to
branch-taken after seeing TWO consecutive branches that are taken.
Similarly, switch to branch-not-taken after seeing two consecutive
branches that are not taken. Complete the FSM using as few states
as possible (you may not need all of the provided states). Output a 1
for branch-taken and a 0 for branch-not-taken.

d) The following circuit outputs a new pseudo random number every cycle.
You are responsible for selecting the cheapest (longest clock-to-q) register
that will result in correct behavior when the circuit is clocked at 10 MHz.
Assume that clock-to-q > hold time. _____________

• All available registers have a setup time of 2 ns
• Adders and multipliers have propagation delays of 30 ns
• Muxes have a propagation delay of 5 ns
• The signals seed and reseed are generated 4 ns after the rising edge of the clock

00 01

10 11

Start

 6/9

F2) V(I/O)rtual Potpourri … (23 pts, 30 mins)
For the following questions, assume the following:

• 32-bit virtual addresses
• 1 MiB pages
• 512 MiB of physical memory with LRU page replacement policy
• Fully associative TLB with 32 entries and an LRU replacement policy

a) How many entries does a page table contain? _____________

b) How wide is the page table base register? _____________

int histogram[MAX_SCORE];
void update_hist(int *scores, int num_scores) {
 for (int i = 0; i < num_scores; i++)
 histogram[scores[i]] += 1;
}

Assume that only the code and the two arrays take up memory, ALL of code fits in 1 page,
the arrays are page-aligned (start on page boundary), and this is the only process running.
c) If update_hist were called with num_scores = 10,

how many page faults can occur in the worst-case scenario?

d) In the best-case scenario, how many iterations of the loop can occur before a TLB miss?
You can leave your answer as a product of two numbers.

e) For a particular data set, you know the scores are clustered around fifty different values, but you still observe
a high number of TLB misses during update_hist. What pre-processing step could help reduce the number
of TLB misses?

 7/9

F3) Datapathology … (22 pts, 30 mins)

Consider the single cycle datapath as
it relates to a new MIPS instruction,
memory add:

madd rd, rs, rt

The instruction does the following:
1) Reads the value of memory at

the address stored in rs.
2) Adds the value in the register

specified by rt to the memory
value and stores the resulting
value in rd.

Ignore pipelining for parts (a)-(c).

a) Write the Register Transfer Language (RTL) corresponding to madd rd, rs, rt

b) Change as little as possible in the datapath above (draw your changes right in the figure) to enable
madd. List all your changes below. Your modification may use muxes, wires, constants, and new control
signals, but nothing else. (You may not need all the provided boxes.)

(i) .

(ii)

(iii)

c) We now want to set all the control lines appropriately. List what each signal should be, either by an intuitive

name or {0, 1, “don’t care”}. Include any new control signals you added.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

d) Briefly (one sentence) explain why madd CANNOT be run on the standard 5-stage MIPS pipeline.

e) Let’s fix our datapath so we can pipeline madd!

If each stage currently takes 100 ps and an
additional ADDER will have a delay of 50 ps, fill
in the following table for two possible solutions:
(1) a 6-stage pipeline and (2) a 5-stage pipeline
with an extended MEM stage. Assume a
memory access takes the full 100 ps. Leave your
throughput answers as fractions.

 6-stage pipeline Extended MEM
Latency:

Throughput:

DataMemOut	

ALUOut	

 8/9

F4) What do you call two L’s that go together? (22 pts, 30 mins)
Suppose we have int *A that points to the head of an array of length len. Below are 3 different attempts to
set each element to its index (i.e. A[i]=i) using OpenMP with n>1 threads. Determine which statement (A)-(E)
correctly describes the code execution and provide a one or two sentence justification.
Answers without a one or two sentence justification will receive NO credit.

a) #pragma omp parallel for
for (int x = 0; x < len; x++){

 *A = x;
 A++;

}

Justification:

b) #pragma omp parallel
{

 for (int x = 0; x < len; x++){
 *(A+x) = x;
 }

}

A) Always Incorrect
B) Sometimes Incorrect
C) Always Correct, Slower than Serial
D) Always Correct, Speed relative to Serial depends on Caching Scheme
E) Always Correct, Faster than Serial

Justification:

c) #pragma omp parallel
{

for(int x = omp_get_thread_num(); x < len; x += omp_get_num_threads()) {
 A[x] = x;
 }

}

A) Always Incorrect
B) Sometimes Incorrect
C) Always Correct, Slower than Serial
D) Always Correct, Speed relative to Serial depends on Caching Scheme
E) Always Correct, Faster than Serial

Justification:

A) Always Incorrect
B) Sometimes Incorrect
C) Always Correct, Slower than Serial
D) Always Correct, Speed relative to

Serial depends on Caching Scheme
E) Always Correct, Faster than Serial

 9/9

F4) What do you call two L’s that go together? (Continued)
The moving average (a type of low pass filter) is an operation commonly used to smooth noisy data.
Here we compute a centered moving average of width WIDTH on an array of data of size , where
each element in our output array is the average of the current element, the previous (WIDTH-1)/2
elements, and the next (WIDTH-1)/2 elements. Assume that WIDTH is odd for simplicity and use
zeros where “required” elements do not exist.

Example Input of : float[] A = [7, 2, 3, 4, 8, 6]
Output for WIDTH=3: float[] result = [3, 4, 3, 5, 6, 4.6666667]

Fit this problem to the MapReduce paradigm using a single map and reduce by filling in the blanks
below. You may assume that you have access to the global variables WIDTH and SIZE. We expect you
to use C syntax with the addition of a few java-like pseudocode elements (e.g. arrays have .length).

// receives data one element at a time
// Inputs: (key) is index i, (value) is A[i]

map(int key, float value){

 __ {

 context.write(x, value);

}

}

// outputs elements of centered moving average
// Outputs MUST be of the form:
// (key) is index i
// (value) is moving average of width WIDTH centered at i

reduce(int key, float[] values){

 float total = 0;

 // do not emit keys that do not exist in output array

 if ((key >= 0) && (key < SIZE)) {

 __

 __

 context.write(____________________ , ____________________);

 }

}

