University of California, Berkeley - College of Engineering

Department of Electrical Engineering and Computer Sciences

Spring 2008

Instructor: Dr. Dan Garcia

2008-03-09

After the exam, indicate on the line above where you fall in the emotion spectrum between "sad" & "smiley"...

Last Name	An	swe	r Ke	≥y									
First Name													
Student ID Number													
Login	cs	610	2-										
Login First Letter (please circle)	a	b	с	d	е	f	g	h	i	j	k	1	m
Login Second Letter (please circle)	a	b	С	d	е	f	g	h	i	j	k	1	m
	n	0	P	q	r	S	t	u	v	W	X	У	Z
The name of your LAB TA (please circle)	B	en	Bria	n (ase	y D	Davi	d K	eato	n	Matt	Oi	mar
Name of the person to your Left													
Name of the person to your Right													
All the work is my own. I had no prior knowledge of the exam contents nor will I share the contents with others in CS61C													
who have not taken it yet. (please sign)													

a) Instructions (Read Me!)

- Don't Panic!
- This booklet contains 6 numbered pages including the cover page. Put all answers on these pages; don't hand in any stray pieces of paper.
- Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the "no fly zone" spare seat/desk between students.
- Question 0 (1 point) involves filling in the front of this page and putting your name & login on every front sheet of paper.
- You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or calculators. You may use one page (US Letter, front and back) of notes and the green sheet.
- There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct points if your solution is far more complicated than necessary. When we provide a blank, please fit your answer within the space provided. You have 3 hours...relax.

Question	0	1	2	3	4	5	Total
Minutes	1	36	36	36	36	36	180
Points	1	14	15	15	15	15	75
Score	1	14	15	15	15	15	75

Name:	Ans	wers	- · · · · ·	Login: cs61c
<u>Ques</u>	tion 1: Potp	ourri: ha	rd to spell, nic	e to smell . (14 pts, 36 min)
		<i>,</i>	e C code to the	#define val 16
right; p	pretend you do	n't know at	oout MIPS yet.	<pre>char arr[] = "foo";</pre>
	-	•	ode, static, heap,	<pre>void foo(int arg){</pre>
sta	ck) do the follo	wing reside	e?	<pre>char *str = (char *) malloc (val);</pre>
arg	stack	arr	static	char *ptr = arr;
*str	heap	val	code	}
b) Na	me a C operati	ion that wo	uld treat arr and p	<pre>sizeof sizeof(arr) != sizeof(ptr) ++ (arr++ crashes, ptr++ does not) tr differently:</pre>

You peek into the text part of an a.out file and se	e that the left six bits of an instruction are 0×02 .
As a result of executing this instruction	opcode=0x02 → jump 2^28 - 4

0

c) What's the most that your PC could change? Be exact.

d) What is the least?

e) Write a getPc function, which ret of the jal instruction calling it.	urns the address	addiu \$v0, \$ra, -4	
(two instructions should be suffic	vient)	jr \$ra	

f) Which of the best-, first-, next-fit schemes would succeed for all 5 of the following sequence of malloc and free requests on a malloc-able region of memory only 8 bytes long? Circle those that would and show the resulting contents of memory for each one. E.g., After the "a=malloc(4)" call, all schemes should have the *leftmost* 4 boxes labeled "a". A pencil is useful (or draw "a" lightly).

				a =	mal	lloc	(4);	b =	= ma	1100	:(1)	; free	e (a); c =	mal.	loc(3);	d =	ma 1	loc	(4);			
d	d	d	đ	b	с	с	¢		с	С	с	h	,				đ	d	d	d	b	С	С	С
		(bes	st-fit)							first-f	īt						. (nex	t-fit)	-	L

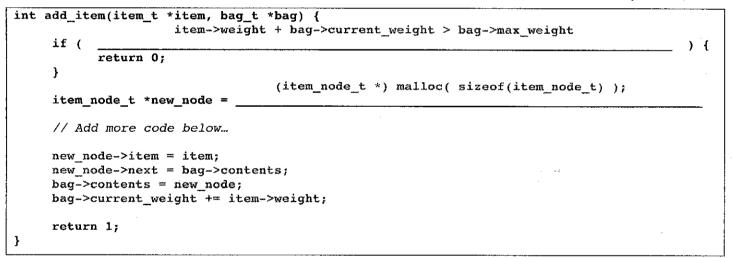
g) In one sentence, why can't we use automatic memory management in C?

C is weakly typed; any variable could be a pointer.

h) To reduce complexity for your software company, you delete the *Compiler*, *Assembler* and *Linker* and replace them with a single program, CAL, that takes all the source code in a project and does the job of all three for *all* the files given to it. Overall, is this a good idea or bad idea? Why or why not?

BAD idea! A change to only one file requires recompiling/reassembling all!

Name: <u>Answers</u>	Login: cs61c
----------------------	--------------


Question 2: Player's got a brand new bag... (15 pts, 36 min)

We want to add an inventory system to the adventure game so that the player can collect items. First, we'll implement a *bag* data structure that holds *items* in a linked list. Each *item_t* has an associated weight, and each *bag_t* has a max_weight that determines its holding capacity (see the definitions below). In the left text area for *item_node_t*, define the necessary data type to serve as the nodes in a **linked list** of items, and in the right text area, add any necessary fields to the *bag_t* definition.

```
typedef struct item {
    int weight;
    // other fields not shown
} item_t;
```

	typedef struct bag {
typedef struct item node {	int max_weight;
// (a) FILL IN HERE	int current_weight;
	<pre>// add other fields necessary</pre>
item_t *item;	// (b) FILL IN HERE
<pre>struct item_node *next;</pre>	item_node_t *contents;
<pre>} item_node_t;</pre>	} bag_t;

c) Complete the add_item() function, which should add item into bag **only** if adding the item would not cause the weight of the bag contents to exceed the bag's max_weight. The function should return 0 if the item *could not* be added, or 1 if it succeeded. Be sure to update the bag's current_weight. You do not need to check if malloc() returns NULL. Insert the new item into the list wherever you wish.

(d) Finally, we want an empty_bag() function that frees the bag's linked list but **NOT** the memory of the items themselves and **NOT** the bag itself. The bag should then be "reset", ready for add_item. Assume that the operating system immediately fills any freed memory with garbage. Fill in the functions below.

<pre>void empty_bag(bag_t *bag) {</pre>	<pre>item_node_t *c void free_contents() {</pre>
<pre>free_contents(); // FILL IN HERE bag->current_weight = 0; bag->contents = NULL;</pre>	<pre>// FILL IN HERE if (c == NULL) return; free_contents(c->next); free(c);</pre>
}	}

3/6

Name:

Answers

Login: cs61c-

Question 3: You won't mind this question one bit! (15 pts, 36 min)

We wish to implement a **bit** array, where we can read and write a particular *bit*. Normally for read/write array access, we would just use bracket notation (e.g., x=A[5]; A[5]=y;), but since a bit is *smaller* than the smallest datatype in C, we have to design our own GetBit() and SetBit() functions. We'll use the following typedefs to make our job easier:

typedef uint8_t bit_t; // If it's a single bit, value is in <u>least significant bit</u>.
typedef uint32_t index_t; // The index into a bit_t array to select which bit is used

E.g., imagine a 16-bit bit array. bit_t A[2]; A[1]=0x82; A[0]=0x1F; Internally, A would look like this:

		:	8			2			1				F			
Array A:	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1
Bit index:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												·				

GetBit(A,0) would return 1, as would GetBit(A,1), GetBit(A,2), GetBit(A,3), and GetBit(A,4). GetBit(A,5) would return 0, as would GetBit(A,6), GetBit(A,7), and GetBit(A,8). Etc.

a) How much space would the largest **usable** bit array take up? 512 MiB "Usable" means we could read and write every bit in the array. Express your answer in IEC format. E.g., 128 KiB, 32TiB, etc.

b) Write setBit in C. You may not need to use all the lines.

void SetBit(bit_t A[], index_t n, bit_t b) { // b is either 0 or 1
A[n/8] = (A[n/8] & ~(1 << (n%8))) | (b << (n%8)); // The one liner. Or ...
uint32_t byte_index = n/8; // (1) Find out which byte we want
uint8_t bit_index = n%8; // (2) Find where within that byte is the bit</pre>

A[byte_index] &= ~(1 << bit_index); // (3) Reset that bit in the byte

A[byte_index] |= b << bit_index; // (4) Assign that bit in the byte

}

c) Write GetBit(bit_t A[], index_t n) in MAL; \$v0 should be 1 if the bit is on, and 0 if it's off. Hint: it might help if you start from the srlv and work backwards.

\$t0, \$a1, 3 srl # $$t0 = byte_index = n/8$ \$t0, GetBit: # \$t1, \$a0, \$t0 # \$t1 = A + byte index addu \$t1,_ # \$t2, 0(\$t1) 1bu # \$t2 = byte = *(A+byte_index) = A[byte_index] \$t2,_ # andi \$t3, \$a1, 7 # \$t3 = bit index = n%8 \$t3, \$v0, \$t2, \$t3 srlv # \$v0 = byte >> bit_index (slide bit to lsb slot) srlv \$v0,\$t2,\$t3 # "srlv rd,rt,rs" means (in C): rd = rt >> rs andi \$v0,\$v0,1 # \$v0 &= 1 (mask out the lsb bit) # \$v0 better be either a 0 or 1 jr \$ra

4/6

Smallest non- zero pos denorm $2^{\circ}x0.01 = \frac{1}{4}$ $0b00001 = 0x1$ Smallest non- zero pos denorm $2^{-2}x0.1 = 1/8$ $0b00001 = 0x1$ Largest non- infinite pos value $2^{1}x1.11 = 3.5$ $0b01011 = 0xB$ Largest non- infinite pos value $2^{3}x1.1 = 12$ $0b01011 = 0xB$ Negative Infinity $-\infty$ $0b11100 = 0x1C$ Negative Infinity $-\infty$ $0b11100 = 0x1C$ Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below. $+0$ $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ 0 $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $1/8$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{1}{4}$	Name: A	nswers		Login: cs61c		
Consider two competing 5-bit floating point formats. Each contains the same fields (sign, exponen significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exp non-numeric values, etc.), but allocates its bits differently.Implementation "LEFT": $$ EE FF$ scratch space (show all work here)Implementation "RIGHT": $$ FEE F$ scratch space (show all work here)Implementation "LEFT": $$ FEE FF$ scratch space (show all work here)Implementation "RIGHT": $$ FEE FF$ scratch space (show all work here)Exponent Bias: $-(Bias-1) = 0$ (Bias-1) = 0Implementation "RIGHT": $$ FEE FF$ scratch space (show all work here)Denorm implicit exponent: 6 Implementation "RIGHT": $$ FEE FF$ scratch space (show all work here)Number of NANs: $-(Bias-1) = 0$ Denorm implicit exponent:Denorm implicit exponent: 2 Implement at the same fields (sign, exponent Bias: $-(Bias-1) = -1$ (Bias-1) = 0Denorm implicit exponent: 2 Number of NANs: 2 Number of NANs: 2 Number of NANs: 2 Implementation scale in the same fields (sign, exponent Bias: 2 2 2 Implementation scale in the same field scale in the same fields (sign, exponent Bias: 2 2 Implementation scale in the same field scale	Question 4: Dic	l somebody	say "Free Lu	nch"?! (15 pts 36	min)	
significand) and follows the same general rules as the 32-bit IEEE standard (denorms, biased exp non-numeric values, etc.), but allocates its bits differently.Implementation "LEFT": $\underline{S} \underline{EE} \underline{FF}$ scratch space (show all work here)Implementation "RIGHT": $\underline{S} \underline{EEE} \underline{F}$ scratch space (show all work here)Exponent Bias: $\underline{-(Bias-1) = 0}$ Implementation "RIGHT": $\underline{S} \underline{EEE} \underline{F}$ scratch space (show all work here)Denorm implicit exponent: $\underline{-(Bias-1) = 0}$ Denorm implicit exponent: $\underline{2^{14-1} - 1}$ Number of NANs: $\underline{6}$ Number of NANs: $\underline{Number of NANs:}$ $\underline{Number of NANs:}$ $\underline{Mathat Number Bit PatternSmallest non-infinite pos value\underline{2^{1}x_{1.11=3.5}\underline{0 \ 0b00001=0x1}Mark every representable number in the range(+0,1] as a vertical line on the number line below.We've already done it for +0.\frac{10}{16} \frac{10}{14} \frac{1}{12} \frac{1}{14} \frac{1}{12} \frac{1}{14} \frac{1}{12} \frac{1}{14} 1$	Consider two comp	eting 5-bit floa	ting point formate	s. Each contains the s	ame fields (sig	n. exponent
non-numeric values, etc.), but allocates its bits differently.Implementation "LEFT": \blacksquare <t< td=""><td>significand) and fol</td><td>lows the same</td><td>general rules as</td><td>the 32-bit IEEE stand</td><td>ard (denorms.</td><td>biased exponen</td></t<>	significand) and fol	lows the same	general rules as	the 32-bit IEEE stand	ard (denorms.	biased exponen
Scratch space (show all work here)Scratch space (show all work here)Denorm implicit exponent:2Number of NANs:Number of NANs:Number of NANs:Number of NANs:Number of NANs:Nation 2"*x0.1=1/8Negative Infinite pos valueNumber of NANs:Mark every representable number in the range (+0,1] as a vertical line on the number line below. We've already done it for +0.ONumber 'n 1/8	non-numeric values	s, etc.), but allo	cates its bits diff	erently.	(
Scratch space (show all work here)Scratch space (show all work here)Denorm implicit exponent:2Number of NANs:Number of NANs:Number of NANs:Number of NANs:Number of NANs:Nation 2"*x0.1=1/8Negative Infinite pos valueNumber of NANs:Mark every representable number in the range (+0,1] as a vertical line on the number line below. We've already done it for +0.ONumber 'n 1/8	l			1		
$\frac{2^{4\pi\times1}-1}{(Bias-1)} = 2^{2\cdot1}-1 = 1$ Exponent Bias: $\frac{-(Bias-1)}{-(Bias-1)} = 0$ Denorm implicit exponent: $\frac{6}{1}$ Number of NANs: $\frac{1}{6}$ Number of Number o	Implementation "LE	:⊢l": SI	E FF	Implementation "RI	GHT": s	EEE F
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td>scratch spa</td><td>ace (show all w</td><td>ork here)</td><td>scratch spa</td><td>ace (show all w</td><td>ork here)</td></t<></th0<>	scratch spa	ace (show all w	ork here)	scratch spa	ace (show all w	ork here)
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:- (Bias-1) = 0Denorm implicit exponent:000						
Exponent Bias:- (Bias-1) = 0Denorm implicit exponent:000						
Exponent Bias:- (Bias-1) = 0Denorm implicit exponent:000						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:-(Bias-1) = 0Denorm implicit exponent:00 <th0< th=""><t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></th0<>						
Exponent Bias:- (Bias-1) = 0Denorm implicit exponent:000						
Exponent Bias:- (Bias-1) = 0Denorm implicit exponent:000						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2 ^{#Eu-1} -	$1 = 2^{2-1} - 1 = 1$		2 ^{#Es-1} -	$1 = 2^{3-1} - 1 = 3$
Denorm implicit exponent:6Number of NANs:Denorm implicit exponent: $infinite states non-zero pos denorm2^{\circ}x0.01 = \frac{1}{4}Obio001=0x1Mumber of NANs:WhatNumberBit PatternSmallest non-zero pos denorm2^{\circ}x0.01 = \frac{1}{4}Obi0001=0x1Largest non-infinite pos value2^{1}x1.11=3.5Obi01011=0xBNegativeInfinity-\inftyObi1100=0x1CMark every representable number in the range[+0,1] as a vertical line on the number line below.Mark every representable number in the range[+0,1] as a vertical line on the number line below.We've already done it for +0.Mark \frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{1}{4}\frac{1}{4}0\frac{1}{18}\frac{1}{4}\frac{3}{4}\frac{1}{4}$	Exponent Blas:			Exponent Bias:		·····
Image: Second s	Denorm implicit exc		as-1) = 0	Deporm implicit over		ias - 1) = -2
Number of NANs:NumberBit Pattern Mat NumberBit PatternSmallest non- zero pos denorm $2^{\circ}x0.01 = \frac{1}{4}$ 0b00001=0x1Largest non- infinite pos value $2^{1}x1.11=3.5$ 0b01011=0xBNegative Infinity $-\infty$ 0b11100=0x1cMark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. $\frac{+0}{4}$ Mark $\frac{1}{2}$ Mark			6			2
Smallest non- zero pos denorm $2^{\circ}x0.01 = \frac{1}{4}$ $0b00001=0x1$ Smallest non- zero pos denorm $2^{-2}x0.1=1/8$ $0b00001=$ Largest non- infinite pos value $2^{1}x1.11=3.5$ $0b01011=0xB$ Largest non- zero pos denorm $2^{-2}x0.1=1/8$ $0b00001=$ Negative Infinity $-\infty$ $0b11100=0x1C$ Negative Infinity $-\infty$ $0b1110=$ Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.*0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$	Number of NANs:		·····	Number of NANs:		
Smallest non- zero pos denorm $2^{\circ}x0.01 = \frac{1}{4}$ $0b00001=0x1$ Smallest non- zero pos denorm $2^{-2}x0.1=1/8$ $0b00001=$ Largest non- infinite pos value $2^{1}x1.11=3.5$ $0b01011=0xB$ Largest non- zero pos denorm $2^{-2}x0.1=1/8$ $0b00001=$ Negative Infinity $-\infty$ $0b11100=0x1C$ Negative Infinity $-\infty$ $0b1110=$ Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.*0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$			· · · · · · · · · · · · · · · · · · ·			
Zero pos denorm $2^{2}x0.01^{2}x1.11^{2}$ $0b00001=0x1$ Zero pos denorm $2^{2}x0.1=1/8$ $0b00001=0x1^{2}$ Largest non- infinite pos value $2^{1}x1.11=3.5$ $0b01011=0xB$ Largest non- infinite pos value $2^{3}x1.1=12$ $0b01011=0xB$ Negative Infinity $-\infty$ $0b11100=0x1C$ Negative Infinity $-\infty$ $0b1110=0xB$ Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number line below. We've already done it for +0.Mark every already done it for +0. $+0$ $1/8$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $\frac{1}{8}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $1/8$ $\frac{1}{4}$ $\frac{3}{4}$ 1		Number	Bit Pattern		Number	Bit Pattern
Largest non- infinite pos value $2^{1}x1.11=3.5$ $0b01011=0xB$ Largest non- infinite pos value $2^{3}x1.1=12$ $0b01101=0$ Negative Infinity $-\infty$ $0b11100=0x1C$ Negative Infinity $-\infty$ $0b1110=0x1C$ Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0. $+0$ $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 0 $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 0 $1/8$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$		$2^{\circ} x 0.01 = \frac{1}{4}$	0b00001= 0x1		2^{-2} x0.1=1/8	0b00001=0x1
infinite pos value $2 \times 1 \times 11^{-3.5}$ 0501011=0xBNegative Infinity $-\infty$ 0511100=0x1CMark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below.Mark every representable number in the range [+0,1] as a vertical line on the number line below. $\frac{+0}{1/8}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $\frac{1}{8}$ $\frac{1}{2}$ $\frac{3}{4}$ 1						-
Infinity $-\infty$ 0 biff 100=0x1C Infinity $-\infty$ 0 biff 110=0x1C Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0.Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0. $+0$ $1/8$ $\frac{1}{2}$ $\frac{3}{4}$ 1 0 $\frac{1}{8}$ $\frac{1}{2}$ $\frac{3}{4}$ 1		2'x1.11=3.5	0b01011=0xB	infinite pos value	2°x1.1=12	0b01101= 0xD
ImmityImmityMark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0. $\frac{+0}{1/8}$ $\frac{1/8}{14}$ $\frac{1/2}{14}$ Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0. $\frac{+0}{1/8}$ $\frac{1/8}{14}$ $\frac{1/2}{14}$ $\frac{1/2}{14}$ $\frac{1}{14}$ Mark every representable number in the range [+0,1] as a vertical line on the number line below. We've already done it for +0. $\frac{+0}{1/8}$ $\frac{1/8}{14}$ $\frac{1/2}{14}$ $\frac{1/2}{14}$ $\frac{1}{14}$ 0 $\frac{1}{18}$ $\frac{1}{14}$ $\frac{1}{14}$ $\frac{1}{12}$ $\frac{1}{14}$ 0 $\frac{1}{18}$ $\frac{1}{14}$ $\frac{1}{12}$ $\frac{1}{14}$			0b11100=0x1C		-∞	0b11110=0x1E
$[+0,1]$ as a vertical line on the number line below. $[+0,1]$ as a vertical line on the number line below.We've already done it for +0.We've already done it for +0. $\frac{+0}{1/8}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1	Infinity			Infinity		
$[+0,1]$ as a vertical line on the number line below. $[+0,1]$ as a vertical line on the number line below.We've already done it for +0.We've already done it for +0. $\frac{+0}{1/8}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 10 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1	Mark every represe	atablo numbor	in the renee	Mark every represe	atable number	in the renae
We've already done it for +0. We've already done it for +0. $+0$ $1/8$ $1/4$ $1/2$ $3/4$ 1 0 $1/4$ $1/2$ $3/4$ 1 0 $1/8$ $1/4$ $1/2$ $3/4$ 1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
			11			1
	0 1/2	<u>l</u> , <u>3</u>	1	0 1/8 ½ 3/9	3.	1
	-4	۲۵ °۵	A.		4	7
Which implementation is able to represent more <i>integers</i> , LEFT or (RIGHT) ? (circle one)	Which implementation	on is able to re	present more <i>int</i> e	egers, LEFT or (R	IGHT) ? (circ	le one)

Name: <u>Answers</u>

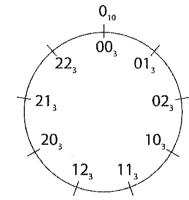
Login: cs61c-____

Question 5: Three's a Crowd... (15 pts, 36 min)

Breaking news! We have just developed hardware that has 3states: {false=0, true=1, and maybe=2}! Now we can store all our numbers in base 3. The race is on to develop a good encoding scheme for integer values.

Decimal	Ternary 12 _{three}		
5			
26	222 _{three}		
27	1000 _{three}		

- a) To warm up, first do some simple conversions between decimal and unsigned ternary. We've done one for you.
- b) Suppose we have N ternary digits (*tets*, for short). What is the largest unsigned integer that can be stored?


3 ^N	 1	

Ok, now that we've got unsigned numbers nailed down, let's tackle the negatives. We'll look to binary representations for inspiration.

c) Name two disadvantages of a *sign and magnitude* approach in ternary. Suppose a leading 0 means positive, and a leading 1 means negative, similar to what we did in the binary days. There are only two signs, but three digits (we waste 1/3 of our numbers)

Wierd gap behavior -> now we jump to 2's mystery zone from 11...11 + 1.

- d) Maybe three's complement will be more promising. To make sure we understand what that means, let's begin with a very small example say a 2-tet number. Fill in the following number ring of tet-patterns with the values we'd like them to represent (just as in two's complement, we want all zeros to be zero, and want a balanced number of positive and negative values). Going clockwise from 00_{three} : 0, 1, 2, 3, 4, -4, -3, -2, -1
- e) Recall that for an N-bit *two's* complement number, the bitpattern of the largest positive number looks like 011...11.
 For an N-tet *three's* complement number, what does the tetpattern of the largest positive number look like?

_____11...11______

f) Provide (in pseudocode) an algorithm for *negating* an N-tet three's complement number.

Flip all tets across 1. (i.e., $0 \rightarrow 2$, $1 \rightarrow 1$, $2 \rightarrow 0$) Add 1. (same as 2's complement!)