
 University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2008 Instructor: Dr. Dan Garcia 2008-05-19

 CS61C Final
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name
Student ID Number

Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

The name of your SECTION TA (please circle) Ben Brian Casey Dave Keaton Matt Omar
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• This booklet contains 9 numbered pages including the cover page.

Put all answers on these pages; don’t hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your backpacks,

laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly zone” spare
seat/desk between students.

• You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or calculators.
You may use two pages (US Letter, front and back) of notes and the green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your answer
within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes.

• You must complete ALL THE QUESTIONS, regardless of your score on the midterm. Clobbering only
works from the Final to the Midterm, not vice versa. You have 3 hours... relax.

Question M1 M2 M3 Ms F1 F2 F3 F4 Fs Total
Minutes 20 20 20 60 24 30 24 42 120 180
Points 10 10 10 30 18 24 18 30 90 120

Score

Confessional:

Name: _____________________ Login: cs61c-____

 2/8

M1) Hey buddy, can you run these instructions for me? Thanks! (10 pts, 20 min)
Consider the following non-delayed branch MIPS function foo:

a) What does the following function call (in C) return? ________

foo(-1, 0x30880001, 0x00481020, 0x00042042);

foo: li $v0,0
 la $t9,loop
 sw $a1,0($t9)
 sw $a2,4($t9)
 sw $a3,8($t9)
loop: nop
 nop
 nop
 bne $a0,$0,loop
 jr $ra

b) You can probably see how foo could pose a security threat if misused. For the good of humanity, we must
seal its functionality forever, and render it harmless. That is, you’re going to call it once with a special set of
arguments for $a0-$a3 (list these below in human-readable form … not as numbers!) so that every future call
to foo always just returns $a0 regardless of the value of $a1-$a3. Oh, and the call to foo with the
arguments below should cause it (this time only) to return 0 to signal success that it has been “neutralized”.

$a0: __________________________

$a1: __________________________

$a2: __________________________

$a3: __________________________

Name: _____________________ Login: cs61c-____

 3/8

M2) This SEEEEMMMs hard! Yeah, but you’re biased! (10 pts, 20 mins)
For this entire question, we only have a byte and consider different numeric encodings. Let’s
compare a floating point SEEEEMMM (1 Sign bit, 4 Exponent bits, 3 Mantissa bits) encoding with a
biased encoding (the one we use to store the exponent in a 32-bit float) and an unsigned number.
Given a raw bit pattern (in hex), we can ask each encoding what number it means. E.g., the raw bit
pattern 0xFF is a NaN for SEEEEMMM, but 128 for the biased encoding. One could plot the raw bit
pattern vs. the number each encoding represents; if the result is not a number (e.g., ∞ or NaN), we just
don’t plot it. We’ve already plotted the biased and unsigned lines. Sketch the SEEEEMMM curve and
answer the following questions. Your sketch can be quite rough. I.e., there’s no need to calculate exact
points or intersections, as long as the number of intersections is correct & it has the right general shape.

a) How many times does the SEEEEMMM curve intersect the unsigned line? __________________________

b) How many times does the SEEEEMMM curve intersect the biased line? __________________________

d) Every region where the SEEEEMMM curve has a slope of
1 (i.e., is it equal to the slope of the two lines drawn),
write down the ranges of the raw bit patterns and the
difference from the unsigned line. E.g., (these are just for
illustration, they’re wrong) “from 0x3F to 0xEA it’s 99 more
than unsigned, and from 0xF1 to 0xF5 it’s 10 less than it.”
Fill in the table below; you may not need all rows.

From To

SEEEEMMM
compared to
unsigned line

0x3F 0xEA 99 more
0xF1 0xF5 10 less

E
n
c
o
d
e
d

N
u
m
b
e
r

raw bit pattern
(binary odometer)

0xFF 0x00

Graphs of encoded number vs raw bit pattern
We’ve done the biased & unsigned lines.

0x80 0x7F

0

E
n
c
o
d
e
d

N
u
m
b
e
r

Name: _____________________ Login: cs61c-____

 4/8

M3) Memories, like the smile we left behind… (10 pts, 20 mins)
a) Here is code and output for a small program, called memtest,

run on an unknown machine with an unknown architecture.
What are two possible reasons the program didn’t print out 1?

main() {
 char *p = (char *) malloc (1);
 char *q = (char *) malloc (1);
 printf("%u\n", (unsigned int) q - (unsigned int) p);
}
unix% ./memtest
16

b) Consider the heap pictured below. The first 8 bytes are reserved for the buddy system. The heap is filled

left to right when more than one slot can satisfy a request. Any free buddy pairs are consolidated immediately
when possible. For the series of memory requests below, fill in the heap snapshot after every 2nd line.
Be sure to label your allocated space and the block boundaries, as is shown in the initial heap.

For the following two questions, we are counting the number of different instructions (add, sub, …), not including
the arguments they could accept. E.g., add $t0,$t0,$t0 and add $s1,$s2,$s3 are only counted as one, add.

c) How many unique TAL MIPS instructions could (not do) we have? _____________________________

d) How many unique MAL MIPS instructions could (not do) we have? _____________________________

1 C = malloc(1);
2 free(B);

3 D = malloc(2);
4 free(A);

5 E = malloc(3);
6 F = malloc(2);

7 free(D);
8 G = malloc(3);

e) Fill the table with ALL the choices that
fit. Some may be blank, and the letters
may be used more than once.

Consumes
(input/uses)

Creates/Causes
(output/side-effects)

1. Slab Allocator

2. Assembler

3. Linker

4. Compiler

5. Reference Counting

6. Copying

7. Mark and Sweep

A. Executable
B. .o files
C. Root Set
D. Relocation Table
E. C Source Code
F. Internal Fragmentation
G. Allocation Requests
H. Symbol Table
I. MAL
J. Half the Heap
K. Library Files
L. External Fragmentation
M. Memory Leak

Name: _____________________ Login: cs61c-____

 5/8

F1) How many CS majors to change a lightbulb? None, that’s HW! (18 pts, 24 mins)
Questions (a), (b), (c) and (d) are independent.

a) You are an intern at a massive hardware firm. Your first task is to design an “odd counter” circuit that receives

a single bit input every cycle and outputs a single bit every cycle. It outputs a 1 if and only if it has seen an
odd number of ones AND an odd number of zeros. It starts in a state where it has seen an even number of
ones and an even number of zeros (remember, zero is an even number). As an example,

the input: I: 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0
will produce the output: O: 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0

Complete the FSM diagram below. The names of the states are arbitrary, but use S00
is the start state. Fill in the truth table on the right. The previous state is encoded in
(P1,P0), the next state is encoded in (N1,N0), and the output is encoded as O. Make
sure to indicate the value of the output on your state.

b) Rebuild this circuit with the fewest gates in the box to the

right, using ONLY AND, OR and NOT gates.

c) Finally, your boss wants you to choose an XOR gate
for the circuit to the right: The clock speed is 2Ghz,
the setup, hold, and clock-to-q times of the register
are 40, 70, and 60 picoseconds (10-12 s) respectively.
What range of XOR gate delays is acceptable?
E.g., “at least W ps”, “at most X ps”, or “Y to Z ps”.

d) You’re asked to create all the unique 3-to-2 circuits (i.e., 3 inputs: I2,I1,I0
and 2 outputs), with one minor catch. Your circuit must ignore the value of I1
if the value of I2 is 1. How many different circuits will you have to make? Use
IEC terminology, like 128 mebicircuits, 512 tebicircuits, etc.

P1 P0 I O N1 N0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

S00 S10

S01 S11

0/0
0/0

1/1

1/0
0/0

1/0 0/1

1/0

Name: _____________________ Login: cs61c-____

 6/8

F2) You’re using circular linked list reasoning (24 pts, 30 mins)
You have a 32-bit MIPS system with…

• 1 MiB of RAM (max)
• Virtual Memory with P-word pages (P is a power of 2, overall page size in the KiB range)
• an L1 write-through data cache with 5 offset bits, 2-way set associative, 4 sets total, LRU replacement

Now, Consider the following code to set up a circular linked list (via an array of next pointers).

#define NUM_NODES <super-big-number> // Power of 2, much bigger than 220

typedef struct node { // A pointer to its own type, like a linked list
 struct node *next; // without the ‘data’ field, only a next ptr.
} node_t; // E.g., a cons with only a cdr. sizeof(node_t) = 4

node_t nodes[NUM_NODES]; // Now let’s make an array of these pointers

// Set up each ‘next’ pointer to point to another element in the array to make a circular
// linked list. If we traversed the pointers, we’d visit every element and return to
// the beginning. E.g., If NODES=4, this function could set the pointers so that we
// would visit 0->1->2->3->0->etc OR 0->2->1->3->0->etc OR any other permutation.
CreateCircularLinkedListOfPtrs(nodes);

SomeFunctionWhichTouchesTonsOfMemory(); // After this, nodes are flushed from cache & VM

node_t *ptr = &nodes[0];
for (int i = 0; i < NUM_NODES; i++)
 ptr = ptr->next; // body (let’s visit all the nodes once and then return home)

a) What single line of C would a really smart compiler

interpret the entire for loop code as? ____________________

b) Assuming no optimization, what single MIPS instruction

would the body of the for loop compile to if ptr is in $s0? ____________________

c) Given the cache/VM parameters above,

fill in the following table for the best
and worst case organizations of the
linked list in memory based on what
CreateCircularLinkedListOfPtrs
might do.

d) Just to do the instruction fetch (IF) for the
instruction you wrote in (b), how many pages
would be read and how many written to a
software-controlled RAID 3 disk array
in the worst case? Assume no disk failures. ____________ read, _____________ written.

 Best Case Worst Case

of Data Cache Misses

of Page Faults

Name: _____________________ Login: cs61c-____

 7/8

F3) You have a case of the soiflz? Go to Datapathology! (18 pts, 24 mins)
On the right is the single-cycle MIPS datapath you all know and love. Ignore pipelining for the question. Your
job is to modify the diagram to support a
new MIPS instruction to perform the
following C code in one MAL instruction
(ptr is an array of ints):

if(ptr[IMMEDIATE] == 0) {
 ptr[IMMEDIATE] = 1;
}

We’ll call our new instruction soiflz,
for store one if load zero.
If the word (that is stored IMMEDIATE
integers past the base pointer in rs) is 0,
then set that word to be 1.

a) Make up the syntax for the MAL

MIPS instruction that does it (show an example where ptr lives in $t0, and IMMEDIATE is 8). On the right,
show the register transfer language (RTL) description of soiflz.

Syntax RTL

b) Change as little as possible in the datapath above (draw your changes right in the figure) to enable

soiflz and list all changes below. Your modification may use adders, shifters, muxes, wires, and new control
signals. If necessary, you may replace existing labels. You may not need all boxes.

 (i)

(ii)

(iii)

(iv)

c) We now want to set all the control lines appropriately. List what each signal should be: an intuitive name or

{0, 1, x – don’t care}. Include any new control signals you added.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

d) Your smart friend argues that because of this very instruction, you should have a fourth instruction format

(in addition to R, I and J). There’s a clear downside: it would cause more complexity with control & datapath.
That said, what would be the upside?

Name: _____________________ Login: cs61c-____

 8/8

F4) Please Pass Professor’s Pretty Pipeline-pourri Problem… (30 pts, 42 min)
Given a standard five (5) stage pipelined processor with:

• No Forwarding
• Stalls on ALL data and control hazards; no out-of-order execution ; non-delayed branches
• Branch comparison occurs during the second stage; instructions are not fetched until branch comparison is done
• Memory CAN be read & written on the same clock cycle
• The same register CAN be read and written on the same clock cycle

a) Fill in the corresponding pipeline stages (F,D,E,M,W) at the appropriate times in the table below for the following six
MIPS instructions assuming the above properties of your CPU. You don’t need to fill anything in for instruction (7).

d) What recent breakthrough allows improved bit density on disk drives? __________________________

e) What’s the speedup (over a 1-core machine) for a 20%-serial program on a 16-core machine? __________

f) Two threads run cal and bears below.

What can go wrong and how do we fix it? __

g) A processor run on a particular benchmark
has the instruction mix and CPI shown in the table
at the bottom right. How many times faster would
the benchmark run if we quadruple
the CPI of the ALU from 2 to 8? _________

h) Which is the best way to communicate with a remote

sensor measuring lunar eclipses, via polling or interrupts? ___________

i) What protocol guarantees delivery on a network? ________________

j) What is one reason MapReduce is better than MPI? ___

 Cycle
Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(1) add $s0 $s1 $t0

(2) addi $t0 $t0 4

(3) sw $s0 0($t1)

(4) and $t1 $t1 $t2

(5) lw $t2 4($t1)

(6) bne $t2 $t1 -6 #goto 1

(7) sub $s0 $s0 $t2

b) Assuming we’ve been in this loop for 1000 iterations, how many cycles does it take to evaluate each loop?

 c) You (as the one who wrote the code in part (a)) are pretty unhappy with all the hazards you discovered
when filling out the table. Suddenly, Sir Mips-a-lot – a representative of the MIPS fabrication plant – runs in
and shouts: “Don’t sulk!! We just implemented delayed branches!”. You decide to move instruction (2) into
the delayed branch slot after (6). Again, assuming we’ve been in the loop for 1000 iterations, NOW how
many cycles to evaluate each loop?

cal() {
 lock(&lockA);
 lock(&lockB);
 sharedVar++;
 unlock(&lockB);
 unlock(&lockA);
}

bears() {
 lock(&lockB);
 lock(&lockA);
 sharedVar++;
 unlock(&lockA);
 unlock(&lockB);
}

 Frequency CPI
Memory 30% 4
Branch 20% 4

ALU 50% 2 8

