
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2007 Instructor: Dan Garcia 2007-05-12

 CS61C Final Exam
After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name
First Name

Student ID Number
Login cs61c-

Login First Letter (please circle) a b c d e f g h i j

Login Second Letter (please circle) a b c d e f g h i j k l m
n o p q r s t u v w x y z

Your LAB TA’s name (please circle) Aaron Alex Brian David Matt Michael Valerie
Name of the person to your Left

Name of the person to your Right
All the work is my own. I have no prior knowledge
of the exam contents nor will I share the contents

with others in CS61C who have not taken it yet.
(please sign)

Instructions (Read Me!)
• This booklet contains 9 numbered pages including the cover page. Put all answers on these pages (feel

free to use the back of any page for scratch work); don’t hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your

backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly
zone” spare seat/desk between students. The exam is closed book, no computers, PDAs or calculators.

• Fill in the front of this page and put your name & login on every sheet of paper.
• You may use 2 pages (US Letter, front and back) of notes, plus the green COD 3/e reference sheet.
• There may be partial credit for incomplete answers; write as much of the solution as you can. We will

deduct points if your solution is far more complicated than necessary. When we provide a blank, please
fit your answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes.

• You must complete ALL THE QUESTIONS, regardless of your score on the midterm.
Clobbering only works from the Final to the Midterm, not vice versa. You have 3 hours...relax.

Problem M1 M2 M3 Ms F1 F2 F3 F4 F5 Fs Total
Minutes 20 20 20 60 24 24 24 24 24 120 180
Points 10 10 10 30 18 18 18 18 18 90 120

Score

2/9

Midterm Revisited
M1) Do you remember when… we used to sing, sha la la la…
a) Some say bubble-gum pop music is garbage, so let’s start with a question about memory management and

running programs! BRIEFLY tell us why the first thing is better than the second thing:

Mark & sweep is better than reference counting because it...

Reference counting is better than copying because it...

Copying is better than mark & sweep because it...

The buddy scheme is better than the slab allocator because it...

The slab allocator is better than the plain K&R free list because it...

Compiling is better than interpreting because...

Interpreting is better than compiling because...

Dynamic linking is better than Static linking because...

Static linking is better than Dynamic linking because...

b) Decode the binary numbers into MIPS instructions with proper register names ($s0, $t0, etc.).

If there are any memory addresses, represent them in hex.

Address 32-bit Binary Instruction Type (R, I, J) MIPS Instruction w/args

0xAFFFFFF8 0000 0001 0000 1000 0100 0000 0010 0110

0xAFFFFFFC 0001 0100 0000 1000 1111 1111 1111 1110

0xB0000000 0000 1000 0000 0000 0000 0000 0000 0001

0xB0000004 ...whatever... ...whatever... ori $v0, $0, 0x61C
0xB0000008 ...whatever... ...whatever... jr $ra

c) You can replace the first instruction with a new instruction and save 2 clock cycles

 on a single-cycle non-delayed branch MIPS machine. What is it (in MIPS)? Careful! _______________

Name: _______________________________ Login: cs61c-____

3/9

M2) Michael Moore should do his next film on this encoding!
Normal floating-point numbers are “bunched up” around zero so that they can represent very small numbers
with high accuracy, but they increasingly spread out as the magnitude of the number increases:

Rough sketch of IEEE 754 Floating-point representation number distribution

However, now instead of having accuracy around zero only, we would like accuracy around every integer.
We’ll call them “floating point integers,” or flints.

Rough sketch of flint representation number distribution

We will have four fields in our 16-bit flint representation: a mini_int part (a signed integer representation),
and a mini_float part (complete with the usual sign bit, exponent field, and mantissa field):

Integer part Float sign Exponent Mantissa
8 bits (signed representation) 1 bit 4 bits 3 bits

“mini_int part” “mini_float part”

Value = value_of(mini_int part) + value_of(mini_float part)

We decode the raw bit representation into a number using the formula above. The mini_float pattern will not
have ± ∞ nor NaNs, but it will have denorms. We wish to adjust the exponent field so abs(mini_float) < ½.
This allows us to “copy & paste” this mini_float distribution around every integer (via the mini_int offset) to
get the overall flint representation number distribution sketched above. Cool, eh?

A. What should the value of bias be? (write your answer in decimal)

B. Given the field widths in the diagram and the bias value from (A), complete the table. Expressions are
OK, but the rightmost column answers MUST be in base 10!:

Commentary on number Bit Encoding Represented Number (in base 10)

Biggest representable
number smaller than 10

0x

Nothing special,
just a nice number 0x -15.25

Most-negative number
(closest to -∞) 0x

Name: _______________________________ Login: cs61c-____

4/9

M3) Because I MIPS you, baby, and I don’t want to C a thing…
What follows is a self-modifying MAL MIPS function. Read it carefully, and answer the questions below.

A) What is the equivalent C code for mystery?
Assume for this part that we only call mystery once.

B) When we call mystery the second time with the same arguments we used the first time, do we get
the same answer? If not, what do we get? (assume it’s not an error)

C) Replace as few nops as possible by the done: label so that mystery behaves as it did in part A
every time it’s called, not just the first time.

mystery:
la $t0, loop
addu $v0, $0, $0

loop: beq $a1, $0, done
 lw $t1, 0($a0)
 addu $v0, $v0, $t1
 lw $t1, 4($t0)

addiu $t1, $t1, 4
 sw $t1, 4($t0)
 addiu $a1, $a1, -1
 j loop

done: nop
 nop
 nop
 jr $ra

// Precondition: 0 < a1 < 215

__________ mystery (___________ a0, int a1) {

}

done: __________________________

 jr $ra

Name: _______________________________ Login: cs61c-____

5/9

 Post-Midterm Questions

F1) Code bugs are terrified of *RA-AI-AID*!!! (Poof!)
1) If you put 5 drives with a mean time to failure (MTTF) of 10 years in a RAID 0

array, what will be the MTTF of the array?

2) In an interrupt service routine, should the ready bit of a device be checked before
accessing it?

3) A CPU running some program was found to have a CPI is 2.5 and, on average, 5
ns of CPU time were used per instruction. What is the clock speed in Gigahertz?

4) What are the two largest challenges that prevent parallel programs from achieving perfect speedup equal
to the number of processors?

a)

b)

5) What does Professor Patterson (and team) want to put into the hands of every systems researcher very

soon?

6) Rather than endlessly trying to create bug-free programs and somehow find users & operators that never

make mistakes (or even trying to eliminate the human element altogether), where does Professor
Patterson believe we should focus our efforts?

7) What does the receiver do with a packet if its checksum indicates it was corrupted in transit?

Name: _______________________________ Login: cs61c-____

6/9

F2) Tune in to 101 on your FSM dial...
We are designing a palindrome-finder circuit with a 1-bit input I(t) and a 1-bit output O(t), that will produce,
at time t, whether the sequence {I(t-2), I(t-1), I(t)} is the same backwards and forwards (e.g, 101).
We’ll assume I(t) has been 1 for all negative time (i.e., before the finder circuit starts). As an example,

the input: I: 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0
will produce the output: O: 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0

a) Complete the FSM diagram below. Our states have been labeled Sxy indicating that

the previous 2 bits, {I(t-2), I(t-1)} would be {x, y}. Fill in the truth table on the
right. The previous state is encoded in (P1,P0), the next state is encoded in (N1,N0),
and the output is encoded as O. Make sure to indicate the value of the output on your
state transitions AND to indicate the starting state with an “incoming arrow”.

b) Provide a fully reduced (i.e., fewest gates to implement…you can use any n-

input gates) Boolean expression for the Output O as a function of P1, P0 and
I. If there is a name for the circuit, write it in the box above. E.g., “The always-
1”, “3-input NAND”, etc. A 2-input XOR has the symbol of “⊕”.

c) How many different answers could I have put in the box for “b” above?
Said another way, how many different circuits can a 3-LUT imitate?

d) We’re always concerned about testing. What is the shortest length of an I(t)
stream that can guarantee you’ve tested this particular circuit exhaustively?

e) Finally, we wish to build our circuit as we normally do for SDS systems
(shown below). Given the four standard spec times from the chip
manufacturer (τsetup, τhold, τclk-to-q, and τCL), what is the smallest clock period τ
we can drive our system with? (Write your answer as an expression involving
the spec variables.) Feel free to draw timing diagrams if you wish.

f)

P1 P0 I O N1 N0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Name:

O =

S00 S10

S01 S11

CLK

 PS

 I

 NS

Name: _______________________________ Login: cs61c-____

7/9

F3) On a final exam, a little cache can boost your performance...
No, we can’t be bribed, but we can improve our
memory access time...let’s take a look!

a) For the purposes of this question, assume our

MIPS processor has two levels of data
caches with the capabilities shown in the
table on the right. Also assume:

• It takes 100 cycles to go to memory
• 1GiB of physical address space

Fill in the table on the right.

b) In software, you decide to live on the wild side
so you turn OFF your L2 cache and clear your
L1 cache. Here are other features:

• 4 GiB of virtual address space
• 2 KiB page size
• 8-entry TLB, LRU replacement
• 32 MiB ARRAY_SIZE
• char A[] starts at a block & page

boundary (i.e., block, page aligned)
• The following code is run on the

system with no other users and process switching turned off.

 main() {
int i,j;
char *A = (char *) malloc (ARRAY_SIZE * sizeof(char)); // block,page aligned
for (i = 0 ; i < (ARRAY_SIZE/STRETCH) ; i++) { // # of STRETCHes
 for (j = 0 ; j < STRETCH ; j++) sum += A[i*STRETCH + j]; // go up to STRETCH
 for (j = STRETCH-1 ; j >=0 ; j--) prod *= A[i*STRETCH + j]; // down from STRETCH
}

 }

i. What is number of bits used for the VPN (assume byte addressing)? ____________________

ii. What is number of bits used for the PPN (assume byte addressing)? ____________________

iii. As we double our STRETCH from 1 to 2 to 4 (...etc), we notice the number

of cache misses doesn’t change! What is the largest value of STRETCH
before cache misses changes? (Use IEC terms, like 64 TiB, 128 GiB, etc.) ____________________

iv. If we double the STRETCH from (iii), what is ratio of cache hits to misses? ____________________

v. As we double our STRETCH from 1 to 2 to 4 (...etc), we notice the number

of TLB misses doesn’t change! What is the largest value of STRETCH
before TLB misses changes? (Use IEC terms, like 64 TiB, 128 GiB, etc.) ____________________

vi. For any value of STRETCH what is the fewest number of page faults

we could ever generate? (Use IEC terms, like 64 TiFaults, 128 GiFaults, etc.) ____________________

 L1 L2
Cache Data Size 32 KiB 512 KiB

Block Size 8 B 32 B

Associativity 4-way Direct-mapped

Hit Time 1 cycle 33 cycles

Miss Rate 10% 2%

Write Policy Write-through Write-through

Replacement Policy LRU LRU

Tag

Index

Offset

AMAT
(in clock cycles)

Name: _______________________________ Login: cs61c-____

8/9

F4) Don’t just sit and wait for another datapath you by!
On the right is the single-cycle
MIPS datapath presented during
lecture. Ignore pipelining for
the question. Your job is to
modify the diagram to
accommodate a new MIPS
instruction.

Your modification may use
simple adders, shifters, mux
chips, wires, and new control
signals. If necessary, you may
replace original labels.

We want to add a new MIPS
instruction (we’ll call it addpr for
“add to pointed reg”) that is
almost identical to addi but with a twist. Instead of storing into the rt register the sum of the constant and the
value of the register specified by rs, it stores into the rt register the sum of the constant and the value of the
register specified by the lowest 5 bits in memory at the address specified by the pointer stored in the rt
register. Said another way, first get the pointer stored in the rt register. Follow that pointer to get its value from
memory. Take the lowest 5 bits of that value, treat is as a register number, and find out what is stored in that
register. Add that to the immediate, and store it in the rt register.

a) Make up the syntax for the I-type MAL MIPS instruction that does it (show an example if the pointer lives in
$v0, and the constant is 5). On the right, show the register transfer language (RTL) description of addpr.

Syntax RTL

b) Change as little as possible in the datapath above and list all changes below. You may not need all boxes.

(i)

(ii)

(iii)

c) We now want to set all the control lines appropriately. List what each signal should be, an intuitive name or
{0, 1, x – don’t care}. Include any new control signals you added.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

d) In the context of a single-cycle CPU, lw used to be the “critical path” instruction that really determined our
fastest clock period, since it utilized the most components of our datapath. Using the terms below to create
an expression that will determine how much slower our clock period will be if we also consider the addpr
instruction: PCRegClkToQ, InstMemAccess, ControlLogicDelay, RegFileAccess, ALUdelay,
DataMemAccess, RegSetup, RegHold, MemSetup, MemHold.

Name: _______________________________ Login: cs61c-____

9/9

F5) Whose pipeline is it anyway? 500 points if you can guess...
You are the owner of a company that manufactures computers on an assembly line 24 hrs/day. You have 5
stages in your assembly line, and each hour (adjustible if need be) the partially-finished computer moves to the
next stage. With 3 shifts of 5 workers working 8 hrs/day, you’ve been in business for weeks. The 5 stages:

• PARTS: Lay out all the parts to be used in the later stages (takes 1 full hour of operator time)
• HW: Plug in all the boards and wire it up (takes 1 full hour of operator time)
• SW: Install the software (takes 1 full hour of operator time clicking “Ok”, “Yes, install everything”, etc)
• TEST: Test that the machine works (the test always takes 1 full hour, but setting it up only takes a moment

of operator time, the rest of the hour the operator sits idle waiting for the test to complete). In the rare case
of failure, the test software makes a loud annoying sound and the machine is placed in the parts recycling
bin; most of the time the test is successful and the computer moves to the next stage.

• BOX: Put the machine in a box, affix a shipping label & load it on a truck (takes 1 full hour of operator time)
a) What is the latency of your assembly line?

b) What is the throughput of your assembly line?

c) How much faster are you than your competitor who manufactures the same
computer but only hires 1 worker per each 8 hr shift? (use Nx, not M% notation)

d) All was going fine until yesterday. Congress passes a law requiring you run a more rigorous 5-hour test
on every machine! This requirement stands to throw a major wrench in your well-crafted manufacturing
process. Without hiring anyone else, and with minimal changes to what you already have in place, what
do you do to be maximally productive? Draw a diagram to explain yourself.

e) Ok, now back to MIPS. You buy a pimped-up single-user, single-process (aside from the OS), single-
CPU, single-core MIPS machine. Miraculously, all 5 pipeline stages always complete in exactly 1ns
(you spared no expense buying the most cutting-edge parts, especially memory – no cache of any sort
was needed since the memory was so fast). A thief breaks into your dorm room and swaps your
awesome 1ns memory with cheap 5ns memory. Both memories have the same standard, simple
interface (in terms of input and outputs) you saw when we built the MIPS datapath. Your system clock
(initially set to 1ns) is adjustable. Does the technique you used in (d) work here? Why or why not?

f) How many cycles would it take to execute the first loop iteration for the code on the left on the 5-stage
MIPS machines on the right? Note: memory and registers CAN be written and read in the same cycle,
branch compares occur in the 2nd stage, we stall on ALL hazards, & there is no out-of-order execution.

Code

Non-delayed branch
No forwarding

Delayed branch
Forwarding

Loop: lw $t0, 42($s1)
 addu $t1, $t0, $s2
 addu $v0, $t1, $t1
 beq $t0, $0, Loop
 sll $0 , $0, 0

