
University of California at Berkeley
College of Engineering

Department of Electrical Engineering and Computer Sciences
Computer Science Division

CS 61c J. Wawrzynek
Spring 2006

Machine Structures
Midterm I

Your Name: Fect, Per

ID Number: 999-99-999

Left Neighbor ID: Right Neighbor ID:

This is a open-book exam. You are allowed to use any books and notes that you wish.
No calculators or electronic devices of any kind, please. You have 2 hours. Each question
is marked with its number of points.

This exam booklet should have 11 printed pages, plus 4 blank pages at the end. Check
to make sure that you have all the pages. Put your student ID neatly on each page.

Show your answers in the space provided for them. Write neatly and be well organized.
If you need extra space to work out your answers, you may use the back of previous
questions or the blank sheets attached to the back of your exam booklet. However, only
the answers appearing in the proper answer space will be graded.

Good luck!

problem maximum score

1 7pts

2 5pts

3 5pts

4 10pts

5 10pts

6 10pts

7 13pts

total 60pts

1

CS61c S06 Midterm I ID: 2

1. [8 points]

Which of these unsigned numbers is largest: FadedAbehex, DeadBeefhex or
FeedFacehex [1 point]?

0xFeedFace

What is B0Dhex in decimal [1 point]?

2829

What is 337ten in hexadecimal [1 point]?

0x151

What is the decimal equivalent of the 6-bit two’s complement number 101010two [1
point]?

-22

Put a T (true) or F (false) in each table cell [1
4

point each, total is rounded up ⇒ 4
points]:

sign & 1’s 2’s
unsigned magnitude complement complement

Can represent
positive numbers T T T T

Can represent
negative numbers F T T T

Has more than one
representation for 0 F T T F

Uses the same addition
process as unsigned T F F T

CS61c S06 Midterm I ID: 3

2. [5 points] The following program is compiled and run on a MIPS computer.

1 int main() {

2 int i;

3 int four_ints[4];

4 char* c;

5

6 for(i=0; i<4; i++) four_ints[i] = 2;

7

8 c = (char*)four_ints;

9 for(i=0; i<4; i++) c[i] = 1;

10

11 printf("%x\n", four_ints[2]);

12 }

What does it print out? (The “%x” in printf is used print out a word in hexadecimal
format.) [3 points]

2

If we change the 2 on line 11 to a 0, then recompile and run, what would be printed [2
points]?

1010101

CS61c S06 Midterm I ID: 4

3. [5 points] The program below is written using the MIPS instruction set. It is loaded into
memory at address 0xF000000C (all instruction memory addresses are shown below).

F000000C loop: addi $1, $1, -1 # [8 | 1 | 1 | -1]

F0000010 beq $1, $0, done # [4 | 0 | 1 | 1]

F0000014 j loop # [2 | 3]

F0000018 done:

For each instruction in the program, write down the values (in decimal) of each field in
the machine language version of that instruction using the following notation:

[value | value | ...]

(With this notation, the MIPS instruction add $3,$2,$1 instruction would be described
as

[0 | 2 | 1 | 3 | 0 | 32].

Put your answers to the right of the “#”s.

CS61c S06 Midterm I ID: 5

4. [10 points] a) The following function should allocate space for a new string, copy the
string from the passed argument into the new string, and convert every lower-case
character in the new string into an upper-case character. Fill in the blanks and the body
of the for() loop [7 points]:

char* upcase(char* str) {

char* p;

char* result;

result = (char*) malloc(1+strlen(str));

strcpy(result, str);

for(p=result; *p!=’\0’; p++) {

if (*p >= ’a’ && *p <= ’z’)

*p += ’A’ - ’a’;

}

return result;

}

Below is table for the ASCII character codes, that you might need for part b). The
numbers along the left and top indicate the first and second hex digits of the codes,
respectively.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! ‘‘ # $ % & ’ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‘ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

CS61c S06 Midterm I ID: 6

b) Consider the code below. The upcase name() function should convert the ith name
to upper case by calling upcase by ref, which should in turn call upcase().

Complete the implementation of upcase by ref. You may not change any part of
upcase name [3 points].

void upcase_by_ref(char** n) {

*n = upcase (*n);

}

void upcase_name(char* names[], int i) {

upcase_by_ref(&(names[i]));

}

CS61c S06 Midterm I ID: 7

5. [10 points] The original MIPS processor did not support multiplication; compilers were
expected to break down multiplication and division into simpler operations. Even on
newer MIPS processors (that have the MUL instruction), compilers sometimes still do
this to improve performance.

Consider the following C function:

int foo(int x) {

return x*257;

}

Write the corresponding MIPS assembly code below. You may not use any form of MUL.
Your answer should use as few a number of instructions as possible [4 points].

foo: sll $v0, $a0, 8 # $a0 contains x

add $v0, $v0, $a0

return value should be in $v0

jr $ra

Multiplication is more difficult when neither argument is known at compile time. The
general procedure for achieving multiplication of two unsigned numbers is to use a series
of shift and add operations (think about how long-hand multiplication works). The
following assembly code multiplies two unsigned numbers, $a0 and $a1, leaving the
result in $v0. Assume that the result is sufficiently small that it fits in a single register.

Fill in the missing lines [6 points].

addi $v0, $zero, $zero # clear $v0

loop: beq $a1, $zero, done # if $a1==0, we are done

andi $t0, $a1, 1 # check bottom bit of $a1...

beq $t0, $zero, skip # ...if it is 0, skip over

the next instruction

add $v0, $v0, $a0 # fill me in!

skip: srl $a1, $a1, 1 # shift $a1 to the right

sll $a0, $a0, 1 # fill me in!

j loop # repeat

done: jr $ra

CS61c S06 Midterm I ID: 8

6. [10 points] Consider the design of a new type of 16-bit processor, with the following
characteristics:

• One machine word equals 16 bits.

• 16 16-bit registers.

• Byte-addressed memory of 216 memory locations.

• 16 different instruction opcodes (some defined below).

• Single word instruction format..

The table below lists a subset of instructions for this machine. Your job is to devise
the machine language (instruction encodings). Each instruction will begin with a 4-bit
opcode field on the far left of the instruction word, followed by whatever other fields are
needed to encode the instruction.

To the extent possible you should model your instruction encodings after the MIPS.
Obviously, there will be differences between the two because of the smaller instruction
size and other differences between the two machines, but also many similarities. For
instance, both machines use PC-relative addressing for branches, and absolute addressing
for jumps. Also, as with the MIPs your encoding should allow the machine to branch (or
jump) to the furthest instruction possible, given the constraints in machine encoding.

For each instruction in the table, divide the instruction word into fields and for each field
specify the contents and the width in bits. Use the following notation:

[name:width | name:width | ...].

(With this notation, the MIPS r-format could be described as:

[opcode:6 | rs:5 | rt:5 | rd:5 | shamt:5 | funct:6].)

CS61c S06 Midterm I ID: 9

a) Fill in the right-most column with your instruction encoding for each instruction.

instruction opcode meaning encoding

add ra,rb,rc 0 ra=rb+rc [op:4 | rb:4 | rc:4 | ra:4]

addi ra,immediate 5 ra=ra+immediate [op:4 | ra:4 | imm:8]

lw ra,offset(rb) 8 ra=memory[offset+rb] [op:4 | ra:4 | rb:4 | offset:4]

sw ra,offset(rb) 9 memory[offset+rb]=ra [op:4 | ra:4 | rb:4 | offset:4]

sll ra,rb,shamt 10 ra=rb>>shamt [op:4 | ra:4 | rb:4 | shamt:4]

srl ra,rb,shamt 11 ra=rb<<shamt [op:4 | ra:4 | rb:4 | shamt:4]

bez ra,label 12 if ra==0 go to label [op:4 | ra:4 | offset:8]

jmp label 15 go to label [op:4 | target:12]

b) In the space below, describe the behavior of your branch instruction (bez) in the style
of the following description for the MIPS beq instruction:

IF (rs==rt) PC = PC + 4 + (SignExtend(immediate) << 2) ELSE PC = PC + 4

if (ra==0)

PC = PC + 2 + (sign_extend(immediate) << 1)

else

PC = PC + 2

c) Similarly, describe the behavior of your jmp instruction in the style of the following
description for the MIPS j instruction:

PC = { PC[31..28], immediate, 00 }, where { , , } means concatenation.

PC = { PC[15..13], immediate, 0 }

CS61c S06 Midterm I ID: 10

7. [12 points] Below is a recursive version of the function BitCount. This function counts
the number of bits that are set to 1 in an integer.

Your task is to translate this function into MIPS assembly code. The parameter x is
passed to your function in register $a0. Your function should place the return value in
register $v0.

int BitCount(unsigned x) {

int bit;

if (x == 0) return 0;

bit = x & 0x1;

return bit + BitCount(x >> 1);

}

MIPS assembly code translation:

##

BitCount

$a0 = x, $v0 = return value

##

BitCount:

addi $sp, $sp, -8 # make stack space

sw $ra, 4($sp) # save return address

sw $s0, 0($sp) # save $s0

add $v0, $0, $0 # initialize $v0 to 0

beq $a0, $0, end # if (x==0) return

andi $s0, $a0, 1 # bit = x & 0x1

srl $a0, $a0, 1 # x >> 1

jal BitCount # recursive call

add $v0, $v0, $s0

end: lw $ra, 4($sp) # restore $ra

lw $s0, 0($sp) # restore $s0

addi $sp, $sp, 8 # restore stack

jr $ra

CS61c S06 Midterm I ID: 11

Scrap.

CS61c S06 Midterm I ID: 12

Scrap.

CS61c S06 Midterm I ID: 13

Scrap.

CS61c S06 Midterm I ID: 14

Scrap.

