
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Science

Spring 2004 Instructor: Dan Garcia 2004-03-08

 CS61C Midterm
Last Name
First Name

Student ID Number

Login cs61c-

The name of your TA (please circle) Alex Chema Jeremy Paul Roy
Name of the person to your Left

Name of the person to your Right
All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others

in CS61C who have not taken it yet. (please sign)

Instructions
• This booklet contains 6 numbered pages including the cover page plus photocopied pages

from COD and K&R. Put all answers on these pages, don’t hand in any stray pieces of paper.

• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your

backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in
the “no fly zone” spare seat/desk between students.

• Question 0 (-1 points if done incorrectly) involves filling in the front of this page and putting

your name & login on every sheet of paper.

• You have 180 minutes to complete this exam. The times listed by each problem will allow you
to finish with 45 (!) minutes left to check your answers. The exam is closed book, no
computers, PDAs or calculators. You may use one page (US Letter, front and back) of notes.

• There may be partial credit for incomplete answers; write as much of the solution as you can.

We will deduct points if your solution is far more complicated than necessary. When we
provide a blank, please fit your answer within the space provided. You have 3 hours...relax.

Problem 0 1 2 3 4 5 6 7 8 9 Total

Min 2 8 20 30 30 30 15 1 14 150
Max 0/-1 2 4 8 16 14 18 6 3 4 75

Score

 2/6

Question 1: Big Ideas (2 Points – 2 minutes)
We’ve discussed four design principles that guide the authors of instruction sets (& played a part in
MIPS design). What is one of them and how did it affect the design? Be as brief as possible.
We’ve shown one of them for you to refresh your memory.

Design Principle How was the MIPS design affected?
Smaller is faster MIPS has 32 registers, rather than many more.

Question 2: Numerical Representation (4 Points – 8 minutes)
a) Below is a table corresponding to the different systems for representing #s. Fill in the six blanks in

the table. Each column should contain the same #, written different ways. Show your work below.

Decimal (base 10) -310 Scratch space

8 bit Sign-Magnitude (in hex)
8 bit One’s Complement (in hex) 0x80

8 bit Two’s Complement (in hex)

b) We’ve seen the decimal point and the binary point, but as you can guess, there’s also a hex point.

Fill in the table below. NB: This is a different question than (a) above – there is no encoding here.

Decimal (base 10) -18.2510 Scratch space

Hexadecimal (base 16) 20.216

Question 3: Floating Point (8 Points – 20 minutes)
a) Shown below is a number whose value is described by the fields (sign, exponent, significand) of

the IEEE 754 32-bit floating-point standard. What is the next-largest (closest to it but larger [closer
to +∞] than it) number that can be represented? Write it in the same format in the blanks below.

12 111000002 00…02 Next-largest ⇒

b) Using IEEE 754 32-bit floating point, what is the largest positive number x that makes this

expression true: x + 1.0 = 1.0? Assume there is no rounding with extra guard/rounding bits (i.e., we
truncate the bits outside the given fractional mantissa field). Write the answer in the same format as
in (a) above. Show all work!

 Show your work below

Name: _______________________________ Login: cs61c-____

 3/6

Question 4: C (16 Points – 30 minutes)
We’ve written matchSubStr below in C. Some of the lines are buggy and some are perfectly fine.
Circle BUGGY or OK for each labeled C statement and if buggy, why it is and provide the fix. A line may
be buggy for multiple reasons, so be sure you're descriptive.

Use the comments near each statement as a guide for what the line SHOULD do. If the code is
buggy and you have a more clever/intuitive way of doing the same thing, feel free to do it your way.
Note: You can assume only valid input will be provided (two non-empty, null-terminated strings).

/* This function tries to find a substring (sub) within another (string).
 * If matchSubStr() finds the substring, it returns the index of the start
 * of the substring. If there is more than one match, it returns the first.
 * This is the scheme-equivalent of an equal? match (not eq? match) */
int matchSubStr(char sub[], char string[]) {

/* Holds the location we’re checking (and will return if a match). */
A: int loc; || BUGGY If buggy, why?
 || OK If buggy, fix:

 /* These variables are pointers to the chars in sub/string */
B: char *c1, c2; || BUGGY If buggy, why?
 || OK If buggy, fix:

 /* We want to iterate through the string looking for a match, so we start at
 * loc=0 (beginning) and keep going as long as we have characters remaining */
C: for(loc=0; strlen(string[loc]); loc++) { || BUGGY If buggy, why?
 || OK If buggy, fix:

 /* We step through the substring using c1 and c2 to reference the
 * letters in sub and string. We stop when we have either exhausted
 * all the characters in sub (and thus found a match) or when we
 * encounter two characters that are not equivalent. */

D: for(c1 = sub, c2 = string&loc; || BUGGY If buggy, why?
 || OK If buggy, fix:

E: ; || BUGGY If buggy, why?
 || OK If buggy, fix:

F: c1++, c2++) { || BUGGY If buggy, why?
 || OK If buggy, fix:

 /* If we didn't find a match, we break out */
G: if(c1 != c2) { || BUGGY If buggy, why?
 || OK If buggy, fix:
 break;
 }
 }

 /* We return the location if we found a match */
H: if(1) { || BUGGY If buggy, why?
 || OK If buggy, fix:
 return loc;
 }
 }
 /* Return -1 if we didn't find a match */
 return -1;
}

 4/6

Question 5: MIPS Assembly Language (14 Points – 30 minutes)
a) Below is a function written in C and the same function partially compiled into MAL. Fill in the

blanks (and the comments!) to complete the compilation. Use register names, not #s. (8 points)
 int *replaceInt(int *array, int toReplace, int replaceWith) {
 for(;*array; array++) {
 if(*array == toReplace) {
 array[0] = replaceWith;
 return array;
 }
 }
 return NULL;
 }

line #
 0 replaceInt: ___ ___ ___(____)

 1 beq ___ ___ endLoop # We’re done

 2 beq ___ ___ doReplace # Let’s replace it

 3 addiu ___ $a0 ___ # _______________________

 4 j ________________

 5 doReplace: ____ ___ ___(____) # _______________________

 6 ____ ___ ___ # _______________________

 7 j ret

 8 endLoop: move ___ ___ # return NULL

 9 ret: jr $ra

b) Now, provide us with the MIPS code that would correspond to the following C function call.

You may not need all the lines (or blanks) below. Note: myArray starts at 8($sp). (3 points)
replaceInt(myArray, 1, 2)

c) Optimize the code above and reduce the number of instructions to fewer than 10. You can do this

through slight adjustments of fewer than four lines of code. Your answer should be in the form of
directives that tell us how the code will be changed: “Move line __ to __ (and change __)”. If
your destination is between two lines, use fractional line numbers. Your last command should be
“Delete line __”. E.g., if you wanted to move line 2 right after line 4 (but have it now be labeled
doReplace) you would write: “move line 2 to 4.5 and change the doReplace label to be at
line 4.5”. You may not need all the lines below; leave “and change __” blank if not nec.). (3 pts)

Move line __ to __ (and change __)

Move line __ to __ (and change __)

Move line __ to __ (and change __)

Delete line __

Name: _______________________________ Login: cs61c-____

 5/6

Question 6: MIPS Reverse-Engineering (18 Points – 30 Minutes)
a) You have heard of Jedi hackers reverse-engineering programs. Prove you belong in that elite

group by converting the following MIPS function mystery into C code. Show your work by adding
comments to the code to help you understand it. (10 points)

 1 mystery: bnez $a0, recur # int mystery(int n) {
 2 li $v0, 0 #
 3 jr $ra #
 4 recur: sub $sp, $sp, 8 #
 5 sw $ra, 4($sp) #
 6 sub $a0, $a0, 1 #
 7 jal mystery #
 8 sw $v0, 0($sp) #
 9 jal mystery #
10 lw $t0, 0($sp) #
11 addu $v0, $v0, $t0 #
12 addu $v0, $v0, 1 #
13 add $a0, $a0, 1 #
14 lw $ra, 4($sp) #
15 add $sp, $sp, 8 #
16 jr $ra #

b) You may have noticed that mystery doesn’t follow proper register conventions but somehow

works. Tell us which line in particular is the most blatant offender and what’s wrong with it? (2 pts)

Line # How does it violate register conventions?

c) What is printed as a result of printf(“%d”, mystery(32))? Show your work. (4 points)

d) What is printed as a result of printf(“%d”, mystery(34))? Show your work. (2 points)

 6/6

Question 7: MIPS Binary (6 points, 15 minutes)
Assemble the following code assuming that the label ‘code’ corresponds to the address 0x00080000.
You should fill in the table below with the hexadecimal value for the instruction. You must show your
work to receive credit.

code: addiu $v0, $zero, 0 # Inst 01 0x24020000
while_loop: lw $v1,-4($a0) # Inst 02 _____________
 beq $v1,$0,loop_exit # Inst 03 _____________
 # There are 10 instructions here
 j while_loop # Inst 14 _____________

loop_exit: …

Question 8: Starting a Program (3 points, 1 minute)
For each of the tasks below, label it with the first two letters of the system whose job it is: COmpiler,
ASsembler, LInker, or LOader.

___ Resolve undefined labels using the relocation information and symbol table

___ Copy the parameters (if any) to the main program onto the stack

___ Change move $t0,$t1 into add $t0,$zero,$t1

Question 9: Memory Management (4 points, 14 minutes)
Assume a simplistic view of 5 bytes of memory, and no header overhead. Further, assume best-fit,
when given multiple identical “best” options, chooses the space closest to the head of the freelist.
Also assume both first-fit and best-fit always “flush-left” within a chunk of free space (i.e., allocates
the memory closest to the head of the freelist). These are shown below with two identical memories:

 FIRST-FIT BEST-FIT COMMAND /* COMMENT */
LABEL: 01234 01234
MEMORY: ----- ----- /* Begin, 5 contiguous bytes of memory free */
 AA--- AA--- A=malloc(2); /* Both first- and best-fit “flush-left” */
 AAB-- AAB-- B=malloc(1); /* A simple request */
 AABC- AABC- C=malloc(1); /* Another simple request…memory almost full */
 AA-C- AA-C- free(B); /* Freeing B fragments our memory: 2 1-bytes */
 AADC- AADC- D=malloc(1); /* Note best-fit chose space 2 over 4 */

Will first-fit ever succeed with a call to malloc where best-fit would fail? If so, draw memories (as
above, except you may initialize them to any state, as long as they are equal) and give a short
sequence of malloc and free calls that proves your point. If not, explain in at most 3 sentences.

Yes, first-fit will succeed where best-fit would fail.

(fill in a table below just like shown above)
No, first-fit will never succeed where best-fit

would fail. (answer below in at most 3 sentences)
 FIRST-FIT BEST-FIT COMMAND
LABEL: 01234 01234

