

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

1

Exam information

183 students took the exam. Scores ranged from 1 to 20, with a median of 9.5 and an
average of 9.25. There were 17 scores between 15.5 and 20, 54 between 10.5 and 15,
76 between 5.5 and 10, and 36 between 1 and 5. (Were you to receive a grade of 16 on
all your midterm exams, 48 on the final exam, plus good grades on homework, quiz-
zes, and lab, you would receive an A–; similarly, a test grade of 11 may be projected
to a B–. The replacement problem that you’ll work on on March 5 will presumably
improve your score.)

There were two versions of the exam, A and B. (The version indicator appears at the
bottom of the first page.)

If you think we made a mistake in grading your exam, describe the mistake in writ-
ing and hand the description with the exam to your lab t.a. or to Mike Clancy. We
will regrade the entire exam (even if the only error is a mistake in adding up your
points).

Solutions and grading standards

Problem 0 (1 point)

You lost

1

⁄

2

 point on this problem for each of the following:

• you earned some credit on a problem and did not put your name on the page,

• you did not indicate your lab section or t.a., or

• you failed to put the names of your neighbors on the exam.

The reason for this apparent harshness is that exams can get misplaced or come
unstapled, and we would like to make sure that every page is identifiable. We also
need to know where you will expect to get your exam returned. Finally, we occasion-
ally need to know where students were sitting in the class room while the exam was
being administered.

Problem 1 (7 points)

Both versions involved predicting how much memory was needed for a node, then
writing an assembly language function that used the node. Lab 4 and homeworks 2
and 4 provided relevant experience. The node definitions were

One byte is required for each

char

 and four bytes for each

int

, so the desired answers
to part a were 16 and 24 for versions A and B respectively. This part was worth 1
point; no partial credit was awarded. A common error was to think that an

N

-element
character array would take up

N+1

 bytes. Some students also were unaware that

char

 values on the instructional computers take up one byte each.

version A version B

struct node {
char name[12];
int value;

};

struct node {
char name[20];
int value;

};

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

2

In part b, you were to implement one of the following:

Since both involve a call to

exam2

 and access to the

to

 argument after

exam2

returns, at least two register values must be saved on the stack:

$ra

 and either

$a0

or one of the

$s

 registers (into which $a0 would be copied). Here are prologs corre-
sponding to the two alternatives:

The order in which register values are stored on the stack is important only insofar
as it matches the order in which they are restored from the stack.

Next comes the call to

exam2

.

$a0

 contains

to

, but we need

*to

. Here’s how to get it:

lw $a0,0($a0)
jal exam2

The decrement or increment breaks down into the following steps:

1. Reload

to

 from the stack if necessary.

2. Decrement/increment it by 4 (since it’s a pointer to a 4-byte pointer).

3. Load from the resulting address. (We now have

*(to±1)

.)

4. Decrement/increment it by whatever you gave in part a as

sizeof (struct node)

,
since

*to

 and

*(to±1)

 are both pointers to a

struct node

.

5. Update memory.

Here is solution code that assumes

$a0

 was saved on the stack rather than in

$s0

.

Finally, we restore

$ra

 and

$s0

 if we used it (restoring

$a0

 isn’t necessary), pop the
stack, and return:

lw $ra,0($sp)
addi $sp,8
jr $ra

version A version B

void exam1 (struct node **to) {
exam2 (*to);
(*(to-1))--;

}

void exam1 (struct node **to) {
exam2 (*to);
(*(to+1))++;

}

addi $sp,-8
sw $a0,4($sp)
sw $ra,0($sp)

addi $sp,-8
sw $s0,4($sp)
sw $ra,0($sp)
move $s0,$a0

version A version B

lw $a0,4($sp) # restore to
lw $t1,-4($t0) # get *(to-1)
addi $t1,$t1,-16 # (*(to-1))--
sw $t1,-4($t0) # update *(to-1)

lw $a0,4($sp) # restore to
lw $t1,4($t0) # get *(to+1)
addi $t1,$t1,24 # (*(to+1))++
sw $t1,4($t0) # update *(to+1)

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

3

Solutions could earn up to 2 points for each of the following, for a maximum of 6:

• correct address arithmetic;

• correct loading;

• everything else (the prolog, the epilog, and the call to

exam2

).

Most errors received a 1-point deduction. Some examples:

prolog/epilog/call

address arithmetic

loads

If you neglected to store the result of the increment/decrement operation, you lost
only

1

⁄

2

 point. You were not penalized for using more than two words on the stack.

The list above includes the most common errors.

Problem 2 (3 points)

This problem was the same on both versions. You were to write a function that, when
called immediately before the buggy

swap

 function, would ensure that

swap

 would
crash when dereferencing the uninitialized pointer variable

temp

.

Step 1 is to figure out where

temp

 is stored, and how it could get accidentally initial-
ized to a value that would make

swap

 “work”. As you saw in lab 3, space for local
variables in a C program is allocated on the system stack. Thus

f

 must put an invalid
pointer onto the stack in the space that

temp

 will occupy to ensure the crash.

Though

gcc

 pushes function arguments onto the stack, a different compiler might
keep them in registers. Thus the number of arguments to

f

 should be the same as the

• forgetting to save

$a0

 or

$s0

• forgetting to save

$ra

• saving but forgetting to restore

$ra

• saving

$ra

 in $s0 but not saving

$s0

• forgetting that

to

 would be in

$a0

 on
entry to the function

• forgetting to set up

$a0

 for the call
to

exam2

• growing the stack in the wrong
direction

• stack pointer off by one

• using “done” instead of

jr

• using an incorrect increment/decre-
ment value

• adding/subtracting in the wrong
order

• adding/subtracting at the wrong
level of indirection

• an extra level of indirection

• using

la

 instead of

lw

• returning the incremented/decre-
mented value in

$v0

 instead of
updating memory

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

4

number passed to

swap

, and the sizes of the arguments should also match those of

swap

, just to make sure

f

 does the same kind of stack manipulation as

swap

 does.
Here is our solution:

void f (int *a, int *b) {
int *temp;
temp = 0; /*

put an invalid pointer value where

 swap

’s

temp

will be

 */
}

The pointers could have been declared as

int

s, which take up the same amount of
space. Any odd number would have worked as an invalid pointer value in place of 0.

We also accepted the following definition, which assumed that arguments all took up
stack space as they did in your lab 3 experiments.

void f (int *a, int *b, int *c) {
a = 0; /*

put an invalid pointer value where swap’s temp will be */
}

We accepted this code with c set to 0 instead of a. However, C always pushes argu-
ments in reverse order.

The 3 points for this problem were split 1 for the code and 2 for the explanation: 1 for
saying something reasonable about a position on the stack, and 1 for saying some-
thing reasonable about a value of temp sure to produce a crash when dereferenced.

Few students got this right. Some incorrect answers were the following:

We think that in the first example, students were trying to make sure swap crashed
because of dereferencing *a rather than *temp. If that worked, swap would then
crash even after it was fixed! Note, however, that since arguments in C are passed by
value, the assignment only affects the copy of &x on the stack; its subsequent use in
the call to swap would use the original &x. In the second, they mistakenly identified
f ’s temp with swap’s; however, the fact that two local variables have the same name
says nothing about where they appear in memory.

Problem 3 (6 points)

This problem was the same on both versions. You were to write a function that
returned a copy of an array of strings (of which argv is an example). We assumed that
lab 2 and homework assignment 2 would prepare you sufficiently for this problem.

A diagram for how argv is represented appears on page 115 of K&R. The top-level
data structure is an array of pointers, each one pointing to the first character of a C-
style string. (In the diagram, the last pointer is 0. We allowed you to disregard this.)
As you noted in lab 2, calls to malloc were necessary both for the top-level structure
and for each of the individual strings. A call to strcpy was necessary to copy each
argv entry into the new data structure, as you also noted in lab 2. Here is a solution:

void f (int *a, int *b) {
a = 0;

}
call: f(&x,&y);

void f () {
int *temp = 0;

}

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

5

char **copyStrArray (int count, char **strArray) {
/* get space for all the pointers */
char **copy = (char **) malloc (count * sizeof(char *));
int k;
for (k=0; k<count; k++) {

/* get space for each individual string, then fill it up */
copy[k] = (char *) malloc((strlen(strArray[k])+1) * sizeof(char));
strcpy (copy[k], strArray[k]);

}
return (copy);

}

One might use pointer expressions instead of array references, substituting
*(copy+k) for copy[k] and *(strArray+k) for strArray[k]

Grading started with a count of malloc calls; you lost 2 points for each missing one. If
your solution copied only one of the elements of the array, you lost 4 (this included 2
for a missing malloc). Then 11⁄2 points were allocated to each of the following:

• the outer malloc, if supplied;

• the inner malloc, if supplied;

• the call to strcpy (you were allowed to code your own version);

• everything else, in a solution that attempted to copy all elements of the array.

This generally meant that each small error was worth 1⁄2 point. Most common were
misparenthesizing malloc arguments or pointer expressions, forgetting a *, and for-
getting to allocate space for the terminating byte in each string. Use of strdup, a func-
tion in nova’s stdio library but not K&R’s, lost you 1 point. (We warned you about
this at the start of the exam.) Multiple errors of the same type were generally com-
bined into a 1-point deduction.

Type mismatches between the parameters of the given call and the header of the
copyStrArray function were unfortunately common. Many of you also confused sizeof
and strlen, or neglected to use sizeof despite the warning against assuming anything
about the size of a pointer or a char, or failed to include the count argument in the
outer malloc. Students who omitted the outer malloc generally tried to declare the
array as a local variable:

char **copyStrArray (int count, char **strArray) {
char *copy[count];

...
return copy;

}

This is wrong for two reasons. First, C doesn’t allow a variable to appear between the
brackets in an array declaration (it needs to know exactly how much storage to allo-
cate for the array at compile time). Moreover, the copy array is allocated on the
stack, and disappears once the function returns.

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

6

Problem 4 (3 points)

This problem was based on homework assignment 3, with the additional feature of
involving actual memory contents. You were to determine the result of freeing a
given block. The storage layouts on the two versions were as follows:

A good first step is to determine what the blocks are. You can determine this from the
administrative words. They have the following format:

A value of 30 in an administrative word represents an allocated block of 12 bytes (3
words) whose left neighbor is also allocated. 31 is an allocated block of 12 bytes next
to a free block, and 32 is a free block of 12 bytes (whose neighbor blocks must be allo-
cated).

The address given to free points to the word that immediately follows the adminis-
trative word. In both versions, the administrative word indicates that the neighbor-
ing block on the left is free, so the two blocks must be combined into a block whose
size is 6 words. The figure on the next page indicates all necessary changes.

The 3 points for this problem were split evenly among the three changes to make:
increasing the size to 6 at address 1034 or 1028, copying the prev field from 103C/
1030 to 1048/103C, and turning on the precedingIsFree bit at address 104C or 1040.
You lost 1 point for each other change that overwrote crucial information (say, a link
in a free block or any other administrative word, or any change to an allocated
block). We ignored changes that would have no effect. You lost 1⁄2 point for an incom-
plete description of a change, for example by saying “the precedingIsFree bit is
turned on” without giving the resulting memory contents. You also lost 1⁄2 point for a
small error that was unrelated to your understanding of memory management, for
example, a hexadecimal arithmetic error.

1044

ptr

101C 00000032
1020 00001808
1024 00001B1C
1028 00000031
102C 00001054
1030 00001010
1034 00000032
1038 00000FF4
103C 0000200C
1040 00000031
1044 00001050
1048 00001028
104C 00000030
1050 00001030
1054 0000102C

Version A

1038

ptr

101C 00000030
1020 00001808
1024 00001B1C
1028 00000032
102C 00000E0C
1030 00001FF0
1034 00000031
1038 00000FF4
103C 0000200C
1040 00000030
1044 00001050
1048 00001028
104C 00000032
1050 00001C08
1054 000010AC

Version B

30 bits

size isFree precedingIsFree

1 bit 1 bit

CS 61C (Clancy) Solutions and grading standards for exam 1
Spring 2003

7

Few of the exams contained intelligible answers. When the page wasn’t blank, it usu-
ally contained various scribbles followed by an answer for changing two or three
words, unaccompanied by any kind of explanation.

A common mistake was to assume that the linked list of free blocks should be sorted
by address as in the K&R storage allocation scheme, and to set the

next

 and

prev

fields of the free blocks accordingly. Some students misread the administrative block
because of hexadecimal arithmetic problems or administrative data ordering miscon-
ceptions. Students also seemed confused about the role of the administrative word;
some of you seemed to think that

everything

 (including administrative data and user
data) was contained in the word at (say) 1044, and that calling

precedingBlock(1044)

would return 1040. We are unsure of the reason for this error.

101C 00000032
1020 00001808
1024 00001B1C
1028 00000031
102C 00001054
1030 00001010
1034 00000062
1038 00000FF4
103C 0000200C
1040 00000031
1044 00001050
1048 0000200C
104C 00000031
1050 00001030
1054 0000102C

Version A

101C 00000030
1020 00001808
1024 00001B1C
1028 00000062
102C 00000E0C
1030 00001FF0
1034 00000031
1038 00000FF4
103C 00001FF0
1040 00000031
1044 00001050
1048 00001028
104C 00000032
1050 00001C08
1054 000010AC

Version B

prev

, copied from

whose size = 6 words

left neighbor

former left neighbor

is now free

new free block

