CS 61C (Clancy) Exam 3
April 189, 2002

Read and fill in this page now.
Do NOT turn the page until you are told to do so.

Your name:

Your login name:

Your lab section day and time:

Your lab t.a.:

Name of the person sitting to your left:

Name of the person sitting te your right:

Problem 0 Total: f20
Problem 1 o -
Problem 2 T Problem 4

Problem 3 -

This is an open-book test. You have approximately fifty minutes to complete it. You
may consult any books, notes, or other paper-based inanimate ohjects available to
you. Use of calculators is not allowed.

To avoid confusion, read the problems carefully. If you find it hard to understand a
problem, ask us to explain it. If you have a question during the test, please come to
the front or the side of the room to ask it.

This exam comprises 10% of the points on which your final grade will be based. Par-
tial credit may be given for wrong answers. Your exam should contain five problems
(numbered 0 through 4) on eight pages. Please write your answers in the spaces pro-
vided in the test; in particular, we will not grade anything on the back of an exam
page unless we are clearly told on the front of the page to look there.

A few students are taking the exam Monday morning. Please don’t post any news-
group items about the exam until then.

Relax—this exam is not worth having heart failure about.

Your login name: cs6lc-

Problem 0 (1 point, 1 minute)

Put your login name on each page. Also make sure vou have provided the informa-
tion requested on the first page.

Problem 1 (2 points, 5 minutes)
Consider the Boolean function represented by the following truth table.

input A input B output Q

0 0 1
0 1 o
1 0 1
1 1 1

Provide a Boolean expression that relates the output Q to the input values A and B.
Your expression should be immediately translatable to a circuit with at most three

gates. The gates of the circuit should include only inverters and two-input AND and
OR gates.

c2

Your login name: csélc-

Problem 2 (6 points, 12 minutes)

At the end of this exam is the code for handling output (excerpted from our solution
to project 3).

Part a

Suppese the project solution program is modified to print the string "Hello\n" prior
to accepting any input, and then is run on the nova computer. This results in print
being called with a six-character string as argument. What are the contents of
nextln and nextOut when print returns (i.e. at the label alldone in the code)? Briefly
explain your answer.

nextin's value =

nextOut’s value =

Part b

Now consider the unmodified project solution program, again run on nova. Its first
call to print uses the argument

“iITnouc'x') Running Tetal => 0x00000000 \XO0D\n"

1.e. a 42-character string. What are the contents of nextin and nextOut when print
returns from this call? Briefly explain your answer.

nextin's value =

nextOut’s value =

Your login name: csble—_

Problem 3 (3 points, 8 minutes)

One of the peer instruction questions involved a two-level page table, represented in
the diagram below.

page table number page table offset page offset |
31 22 12 11 D

first-level page table

physical address of
second-level page taole

p=| Ehysical
page #

For the peer instruction question, we assumed that the length of a virtual address
was 32 bits. List three different ways of accommodating a 33-bit virtual address in
this address translation system while retaining the two-level table structure and 32-
bit physical address length. For each method vou list, deseribe its specific effect on
page sizes and the page tables.

Your login name: csfle-

Problem 4 (8 points, 24 minutes)

Consider a 16-word (not counting tags) 2-way associative cache with a block size of 4
words using LRU replacement, — =

L puerhy =\ loyEe .

Part a e

Indicate in the figure below which bitsrt:':f,q_-_B_ﬁ-bit address form the tag, the cache

index, and the byte offset. —

23 |

J_) "EM
A
ot | &5 14 13 12 11 10 g] T o a3 4 3 f__,E 1 4]
L - |
Part b

Suppose that the contents of memory between byte addresses 52 and 83 are as
shown below.

byte a2 53 b4 hh 36 o7 538 &9 60 61 62 83 64 G5 66 67
address

contents 8 ‘ & 3 1

frvie 65 64 70 Tl T2 T3 4 T5 76 77 T& 79 B) 81 B2 B3
address -

contents | I_\ 4 \ 5 9 2

In the diagram below, fill in the result of loading the word at address 68, using a
cache that's initially empty.

set # data fcmatentf;,'f/

|| 45| 1

0 J/ | ,
l
I

Your login name; cs6lc-

Part

The cache.c program from lab assignment 10 (listed at the end of this exam /), run on
a computer with the cache just described (and no secondary cache), produces a
“read+write” time of 200ns in the situation where the number of cache hits s maxi-
mized and a time of 800ns when the number of cache hits is minimized.

By filling in the bottom row of the table below, indicate what times this run of
tache.c might produce for ;wéaﬁith—ﬁﬁdes—rMQg 1to 16 words.
gial

Each value will be one of the followin G_Q/gs_. 350ns, 500ns, 800ns—.

stride in words 1 2 4 3 16

stride in bytes _4 —8— 16— 32 =g
si1ze in
words byvtes

| I— |
8 82 200 200 200

16 k4 |_2t]ﬂ 20&/}9

32 128 |

Cé

Your login name: csblc-

Code from the project 3 solution

indona:
lw 5t0, nexcour
lw 21, nextIn
tne 5:t0,3t1.notempoy
Iur SE3 . O0xffff
sw 50,8(5t3)
j incDeone
notamety:
ul ofl BwFEEE
lw z62,8([5t1)
andl St2,5t2, =1
beqg St2,50, intDone
la sStc2 buffer
addu $t3,5tc2,s:z0
Ik S5£2,0(5:£3)
sk 5t2,12(5t1)
addiug St1,%5:0,-1

inthons

puffer: .space 32
nextIn: .word @
nextOurt: .word 0
print:

1l 5£3,0(5a0)
addiu ta0, 50,1
beg 5t3,50,alldone
1w SE0, nakeln
addiu St1, %50, -1
andi $t1,3%5cl, 31

chlkfull:
lw 322, nextcOut
beg 5t2,8tcl,chkfull
la 5td,buffar
add Scd,std, 560
sb 5£3,0(5c4)
=w Stl,nextIn
Iaf St DeEfErs
addig $t2,50,2
=W SE2,EB(5t3)
F.print

alldone:-
Jm 4

¥
#

M dE H 4w o3k W M A e e

i i

£

Next attend to output.
Is buffer empty? Le. is nexcout equal to nex=In?

If s0, disable interrupts in the transmitter.

Get base address of device registers.
Get status word for output.

Mask out all but ready hit.

Return if not ready.

Get buffer base address.

Add offset.

(Get the character from the buffer,
Output character to terminal.
Decrement index.

Wrap around from -1 back to 31,

Characters waiting to be output.
Index of next place to inzert character into buffer.
Index of next character to remove from buffer

Fetch next character to store in buffer.
Check for end of string.

Fetch current input index.
Compute new input index after we store the n=xt character.
Wrap around from —1 back to 31.

Is buffer full? Le is nextIn just before nexcouc?
If g0, just keep checking until things get better

There is space in the buffer; store character.
Update "nextIn’ index.
Make sure interrupts are enabled in the ransmitter,

Go back for more characters.

Eeturn to caller.

CT

Your login name:

cache.c
#define CACHE MIN (1024) /= smallest cache (in words) =/
#defiine CACHE_MAX (258+1024) /* largest cache »/
f#defins STRIDE MIN 1 /* amallest stride (in words) =/
#define STRIDE_MAX 128 /= largest stride ¢
fdefine SAMDPLE 10 /* togetalarger time sample -/
#dafine CLE_TCE &0 ¢* number clock ticks per second */
int X[CACHE MAX]; {* array going to stride through +/
double get_seconds () | /* routine to read time */
sCruct tm= rusage:
times (&rusage): f* UNIX utility: time in clock ticks */
return (double) (rusage.tms_utime) / CLE.TCK:
int main (] |
int regiscer i, index. stride, limic, teme
int steps, tsteps, csize;
double secl, =ac /™ timing variables =/
for (csize = CACHE_MIN; csize <= CACHE MAX; csize = csize * 2)

Zer (stride = STRIDE_MIN; stride <= ETRIDE_MAX; stride = stride = 2) {
sec = 0; J* initialize timer */
limit = ogize - seride + 1; /* cache size this loop -/
steps = 0;
do { /* repeat until collect 1 second */

secl = get seconds {); /% start timer </
Lor (i = SAMPLE * stride; i != 0: 1 = 1 - 1) /* larger sample */
for lindex = 0; index < limit; index = index + stride)

x[index] = x[index) + 1: /* cache access ¥/
steps = steps + 1; /™ count while loop iterations -/
sec = sec + |(get_seconds (] - secd): /7 end nimer */

]
while (gec < 1.0); /% until colleet 1 second =+

{* Repeat smpty loop to loop subtract everhead =/
tsteps = 0; /* used to match number of while iterations =/
da | /* tepeat until same number of iterations as above =/
secll = get_seconds |(}; /* start timer */
for (i = SAMPLE * ztride; i I= 0; i = 1 - 1} /* larger sample */
for {index = 0; index < limitc; index = index + stride)

temg = temp + index: {* dummy code =/
Csteps = tsteps + 1: ¢* count while iterations =/
sec = sec - [get_seconds [} — =esch);: /* —overhead =/

]
whila (tsteps < steps); ¢* until equal to number of iterations =/
if{ scride==STRIDE MIN } princf{-\n");:/* extraline to separate ATTAY 3iZes T/
printf{"Size(bytes): %7d Stridei{bytes): %4d read+write: %4_0Ff ns\n",

csize * sizenf (int), stride * =zizeof (int!},

ldeuble) sec*le8 / (sCeps*SAMPLE*straide*({limiz-1)/strides + 111;
1: /* end of both outer for loops */

C8

