
61C Spring 2002, MT2, Clancy

Problem 1 (6 points, 15 minutes)

Consider the following assembly language program segment, which loads $t0 with the larger of $a1 and an integer
labeled by value.

lui $at, upper half of value
 lw $t1, lower half of value ($at)
 slt $at, $t1, $a1
 beq $at, $0, t1greater
 add $t0, $0, $a1
 j gotmax
t1greater:
 add $t0, $0, $t1
gotmax:
 ...

Part a

The table below lists some of the statements in the program segment. Indicate which of the statements listed below
will be represented by an entry in the relocation table.

Statement

lui $at, upper half of value

lw $t1, lower half of value($at)

beq $at,$0,t1greater

j gotmax

will it contribute an entry to the
relocation table?
(yes or no)

Part b

Given below is the part of the text segment of max.o that's the assembled version of the assembly language segment
above. Assume that when the code is included in a program that is assembled into a file named max.o, the
instruction labeled by t1greater is the 33th instruction in max.o;s text segment and the word labeled by value is the
7th word in max.o's data segment. Fill in the missing hexadecimal digits.
Show your work.

instruction

 lui $at, upper half of value

 lw $t1, lower half of
value($at)

 slt $at,$t1,$a1

 beq $at,$0,t1greater

 add $t0,$0,$a1

 j gotmax

t1greater:
 add $t0,$0,$t1

gotmax: ...

corresponding hexadecimal value

3C01 __________

8C29 __________

0125 082A

1020 __________

0005 4020

0009 4020

Problem 2 (6 points, 15 minutes)

Consider a representation (diagrammed below) for storing 8-bit floating point values that's exactly the same as the
IEEE floating point representation except that the tree bits are allocated to the exponent and four to the significand.

Part a

Express in decimal the value represented by the byte 0xE1. Show your work for full credit. (A list of powers of 2
appears for your reference on the next page.)

Part b

Let a be the value represented by the byte 0xE1. Determine a value for b that, when added to a using the byte
counterpart of IEEE floating point addition, produces a result that's not equal to the algebraic sum of a and b.
Express this value in hexadecimal, and verify the mismatch of the computed and the algebraic sum.

Powers of 2

n

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

2n

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

Problem 3 (5 points, 14 minutes)

Complete the framework on the next page to produce an assembly language function named reverse that
implements the following (equivalent) Scheme and C functions:

Scheme

(define (reverse L soFar)
 (if (null? L) soFar
 (reverse (cdr L) (cons (car L) soFar))))

Equivalent C version

struct Thing {
 ... (as in project 1)
}
typedef struct thing *ThingPtr;
ThingPtr reverse (ThingPtr L, ThingPtr soFar) {
 if (L == NIL) {
 return soFar;
 } else {
 return reverse (L->th_cddr, cons (L->th_car, soFar));
 }
}

The code you supply should match he associated comments. Don't worry about memory allocation; the cons
function will deal with that.

Framework to be completed

reverse:
 # Save relevant registers on stack.

 # Check base case.

recursive:
 # Prepare for call to cons.

 Jal cons
 # Prepare for recursive call to reverse.

 jal reverse
return:
 # Pop stack, restore relevant registers, and return the desired result.

Problem 4 (2 points, 5 minutes)

Under what conditions will execution of the instruction
 sw $t0, 3($t0)
produce an error? Circle your answer, and briefly explain.

 never sometimes always
Explanation:

