Problem #1 (3 points)
Convert the eight-bit binary value 11110000 to:
(a) hexadecimal.
(b) decimal, interpreting it as a unsigned value.
(c) decimal, interpreting it as a two's complement signed value.

Problem #2 (3 points)
Decode the following binary numbers as MIPS instructions and give the equivalent MIPS assembly language (MAL) statements.

<table>
<thead>
<tr>
<th>address</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x40</td>
<td>10001100101101110000000000100100</td>
</tr>
<tr>
<td>0x44</td>
<td>000000010111001001011000000100011</td>
</tr>
<tr>
<td>0x48</td>
<td>00011110110000001111111111111110000</td>
</tr>
</tbody>
</table>

Problem #3 (2 points)
Why did the MIPS designers use PC-relative branch addressing (One sentence is enough!)

Problem #4 (4 points)
Consider this C struct definition:

```c
struct foo {
    int *p;
    int a[3];
    struct foo *sf;
} baz;
```

Suppose that register 16 contains the address of baz.
For each of the following C statements, indicate which of the MAL code fragments below (A-H) could be the result of compiling it.

codeA: lw $8, 0($16)
 sw $8, 4($16)

codeB: lw $8, 0($16)
 lw $9, 0($8)
 sw $9, 4($16)

codeC: lw $8, 4($16)
 sw $8, 0($16)
codeD: sw $16, 16($16)
codeE: lw $17, 6($16)
codeF: lw $17, 12($16)
codeG: lw $8, 0($16)
sw $8, 16($16)
codeH: addi $8, $16, 4
sw $8, 0($16)

___ number = baz.a[2];
___ baz.p = baz.a;
___ baz.a[0] = *baz.p;
___ baz.sf = &baz;

Problem #5 (6 points)
Translate the following C procedure to MAL. Use the convention in which arguments are passed in registers.

```c
int garply(int a, int *b) {
    int c;

    c = subt(a >> 6);
    *b = a + *b;
    if (a <) || c <0)
        return c;
    else
        return c | a;
}
```

Problem #6 (6 points)
Consider the following fragment of a C/C++ program.

```c
int v[10], s;
int *p;

s = 17;
for (p = &v[3]; *p != 0; p++)
    s = s + *p;
```
Here is a buggy translation in MAL, assuming s is in $16 and p is in $19.

```
or  $16, $0, $0
lw   $19, v+12
loop:
bne  $8, finish
add  $16,$19,$16
addi $19, 1
j    loop
finish:
```

There are six errors, including one missing instruction, in this translation. Find and fix them.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.