CS 61C Midterm #2 — November 2, 1994

Your name
login cs61c
Discussion section number
TA's name

This exam is worth 25 points, or 18.7% of your total course grade. The exam contains six substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login correctly at the top of each of the following pages.

This booklet contains five numbered pages including the cover page. Put all answers on these pages, please; don't hand in stray pieces of paper. This is an open book exam.

Our expectation is that many of you will not complete one or two of these questions. If you find one question especially difficult, leave it for later; start with the ones you find easier.

	I
0	/1
1	/6
2	/3
3	/2
4	
	/3
5	/4
6	/6
total	/25

Question 1 (6 points): Given the physical address 0x0f1653f8, compute its block offset, set number, and tag for each of the following caches:

size	width	policy	offset	set	tag
(words)	(words)				
1024	8	direct			
		mapped			
4096	16	4-way set			
		associative			
4096	4	fully			
		associative			

Question 2 (3 points): Disassemble the following machine instructions into TAL:

0x02282822 0xAFB00008 0x0541FFFE

Question 3 (2 points): What is the use of the dirty bit in a page table entry or a TLB entry?

Your name		login cs61c
- , -	,	lowing tasks, indicate whether it is alway ng system, or could be either way:
a. Reading a page to	able entry from main men	nory.
b. Reading a TLB e	entry.	
c. Setting the write	enable bit for a page.	
Question 5 (4 poi	nts): Consider the following	ng configuration:
	Virtual address: Physical address:	20 bits 16 bits
	Page size:	4K bytes (1K words)
	Cache size:	256 bytes (64 words)
	Cache width:	4 word
	Cache type: Cache policy on write:	direct-mapped write-through
	TLB size:	4 entries

The machine is byte addressable. $\,$

a. How many entries are there in the page table?

(This question continues on the next page.)

Question 5 continued:

b. The current data store in this computer is as follows:

TLB:			Virtual page #		Physical p	oage #
	0	1	0x1a 0x01		0x2 0x8	
	2		0x05 0x2f		0xb 0x0	

Cache:		Va	ali	d 	Tag		Word #0	Word #1	Word #2	Word #3
	0	 	1		0x20		0x10	0x20	0x30	0x40
	1		1		80x0		0x11	0x22	0x33	0x44
	2		0						1	1
;	3		0							1
	4		1		0xb6		0x90	0xa0	0xb0	0xc0
!	5		0				ĺ		1	1
1	6		0				ĺ		1	1
•	7		0				ĺ		1	1
;	8		1		0xb5		0x50	0x60	0x70	0x80
!	9		0							1
;	a.		0				ĺ		1	1
•	b		0				ĺ		1	1
	С		0				ĺ			1
•	d		0				ĺ		1	1
,	е		0				1]
:	f		1		0x81	1	0x55	0x66	0x77	0x88

What is the data contained in virtual address 0x05584? (Hint: You do not need to know what the content of the page table or physical memory is.) Show your work! Indicate which TLB and/or cache entries you use.

Your name	login	cs61c-	

Question 6 (6 points): Convert the following C function into a MAL procedure. Use \$16, \$17, \$18, and \$19 for local variables. Parameters are passed in \$4. Make sure you follow the conventions discussed in class. You will not get full credit if you do not follow the conventions.

```
int finalGrade(int studentId)
{
    int hwGrade;
    int mtGrade;
    int projGrade;
    int grade;

    hwGrade = getHwGrade(studentId);
    mtGrade = adjustCurve(getMtGrade(studentId));
    projGrade = getProjGrade(studentId);
    grade = hwGrade + mtGrade + projGrade;
    return(grade);
}
```