
 1

University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2016 Instructors: Randy Katz, Bernhard Boser 2016-12-16

L CS61C FINAL J

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...

Last Name

First Name

Student ID Number
CS61C Login cs61c-

The name of your SECTION TA and time

Name of the person to your LEFT

Name of the person to your RIGHT

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

 Instructions
● This booklet contains 10 numbered pages of text including the cover page.
● Turn off all cell phones, smartwatches, and other mobile devices and place out of reach. Remove hats &

headphones. Place your backpacks, laptops and jackets on the sides of the room.
● You have 170 minutes to complete this exam. The exam is closed book; no computers, phones, or

calculators are allowed. You may use three handwritten 8.5”x11” page (front and back) crib sheet in addition
to the MIPS Green Card, which we will provide.

● There may be partial credit for incomplete answers; write as much of the solution as you can. Keep in mind
though, we will deduct points if your solution is far more complicated than necessary or interspersed with
incorrect answers. When we provide a blank, please fit your answer within the space provided.

● Points are assigned by the approximate time to answer the question, 1 point = 1 minute. Pace yourself, and
attempt every question for partial credit.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Total
Max Points 20 12 10 18 20 20 20 120

 2

Q1: Potpourri (20 points)

1.1 PUE (Power Usage Effectiveness) (4 points)

In a Warehouse-Scale Computer, what happens to the PUE (Power Usage Effectiveness) when we
make the IT equipment more efficient by cutting its power in half, but leave the infrastructure power
unchanged? Circle the best answer choice below.

a. The PUE is doubled
b. The PUE is halved
c. The PUE is unchanged
d. The PUE is increased by 50%
e. The PUE is decreased by 50%
f. None of the above

1.2 Amdahl’s Law (6 points)

Using deep learning, you programmed a neural network that is a perfect predictor of the stock market.
One small problem: on your single-core laptop, the code takes so long that you get your predictions a
week late. Benefitting from your innovation requires a 100x speedup.

Your program spends 20% of its time for setup and the remaining 80% number crunching. A
superscalar can speed up the former, while a SIMD unit speeds up the latter. Furthermore, the
execution speed is proportional to the number of cores, with negligible parallel processing overhead.

Calculate the speedup for each of the processor choices listed in the table below and the number of
cores require to achieve the necessary 100x speedup.

 	
	

Processor	 Speedup	of	 Overall	Speedup	 #	Cores	 setup	 number	crunching	
Laptop	 1x	 1x	 1x 100
A	 1x	 4x	 100/40	=	2.5x 40
B	 4x	 1x	 100/85	=	1.18x 85
C 2x	 8x	 100/20	=	5x	 20	

	
	

	

 3

1.3 Test and Set (10 points)

A new implementation of MIPS uses the tas instruction (“test and set”) for synchronization, rather
than ll and sc.

tas $rt off($rs)

writes a 1 to memory location off($rs) and sets $rt to the old contents of off($rs).

Finish writing the following code (marked by the black arrows) to grant exclusive access to a “critical
section” in MIPS assembly. You may choose to first write pseudo-C-code, and then translate that
code to assembly. Only the assembly will be graded. Use tas, not ll and sc in your code! Fill in the
code below at the places marked by arrows. You may not need all lines. You may use labels in MIPS
assembly.

Initialization (executed once at program start):

Pseudo	C	code	 MIPS	assembly	
// declaration of lock # declaration of lock
// (program initialization) # $s1 points to lock
int lock = 0 sw $zero, 0($s1)

Critical Section:

// acquire lock # acquire lock
while (tas(lock) == 1); addi $t1, $zero, 1
 Try: tas $t2, 0($s1)

 beq $t1, $t2, Try
	 	
// critical section # critical section
// exclusive access # exclusive access
	 	
// release lock # release lock
lock = 0 sw $zero, 0($s1)
	 	

 4

Q2: RAID and ECC (12 points)

A RAID 2 Disk Array organization interleaves data on a fine-grain basis and protects it using a
Hamming Code with additional parity bits mixed in among the data bits. As a reminder, a Hamming
ECC Code with three parity bits and four data bits redundantly encodes data as follows:

1 2 3 4 5 6 7
p1 p2 d1 p4 d2 d3 d4

p1 X X X X
p2 X X X X
p4 X X X X

For the purposes of this question, assume that parity is calculated using ODD rather than EVEN
parity.

Four disks worth of data is nibble (4-bits at a time) interleaved across four disks with an additional
three parity bits. Disk #4 (p4) suffers a hard crash and cannot be read. The data on the remaining
disks for the first nibble looks like this, with ? indicating the bits that cannot be read:

0 0 0 ? 1 1 0: 1 (2 points)

1 0 0 ? 1 0 1: 1 (2 points)

0 0 1 ? 0 0 0: 1 (2 points)

1 1 1 ? 0 0 1: 0 (2 points)

Fill in the correct missing bits in the underlined spaces at the right (8 points).

If a single disk can do 50 small (i.e., sector-sized) random read or write operations per second, how
many read/write operations can the 4 D + 3 P RAID 2 disk array perform per second? Circle the
correct answer below:

 50 150 200 350 (2 points)

A single disk can transfer large contiguous blocks of data at the rate of 100 Mbps. Circle the correct
effective large contiguous block real data transfer rate of the 4 D + 3 P disk array below (in Mbps):

 100 300 400 700 (2 points)

 5

Q3: Always label your axes (12.5 points)

Label the X and Y axes of the following graphs.

The possible options are:

1. bytes per second
2. operations per second
3. percent utilization
4. power consumed
5. processor power
6. time

7. probability of failure
8. ratio of ideal to actual performance
9. ratio of actual to ideal performance
10. thread count
11. time per operation

Some options can be used more than once and some options may never be used.

(i) MTTF (2.5 points)

(ii) Latency (2.5 points)

(iii) Speedup (2.5 points)_

(iv) Throughput (2.5 points)

(v) Power proportionality (2.5 points)

	

	

	

	

6

7

11

9

10

1

2

3

5

2

 6

Q4: Spark (15.5 points)
Given a set of documents, fill in the following functions so the code will do the following sequentially:

1. Count the total number of times each word shows up in a document
2. Finds the document that the words show up in the most times. If there is a tie between two

documents, choose the document with the lower document ID.
3. Finally returns a set of key value pairs where the key is the document ID and the value is a list

of all the words that showed up the most frequently in that given document.

def find_all_words(document):

Returns a list of all the words in a document. Words are converted
to lower-case, represented as strings. Assume this is implemented.

def flatmap_func(pair):

 document_id = pair[0] # This is an integer

 document = pair[1]

 all_words = find_all_words(document)
 return [((word, document_id), 1) for word in all_words]

def count(v1,v2):

 return v1 + v2

def map_func(pair):
 key = pair[0][0]
 value = (pair[1],pair[0][1])

 return (key, value)

def compare(v1,v2):

 if v1[0] > v2[0]:
 return v1
 if v2[0] > v1[0]:
 return v2
 if v1[1] > v2[1]:
 return v2
 else:
 return v1

def transform_func(pair):
 key = pair[1][1]
 value = pair[0]

 return (key, value)

if __name__ == “main”:
 rdd = sc.parallelize(documents) \

 .flatMap(flatmap_func) \

 .reduceByKey(count) \

 .map(map_func) \

 .reduceByKey(compare) \

 .map(transform_func) \
 .groupByKey().collect()

 7

Q5: MIPS Datapath (20 points)

Shown below is a simplified single-cycle MIPS datapath with circuitry added to implement the ll and sc
instructions. Lbit is a 1-Bit D-flip-flop that can be set and reset with c01 when cLEnable=1. A 32-Bit
address latch, enabled by cAddrEn, and an address comparator have been added also.

Complete the MIPS control table on the next page for instructions lw, ll, and sc. You may not need all
rows.
Hint: Consider what is the purpose of ll and sc, namely to guarantee exclusive access to a critical region.
Any action that could potentially jeopardize this guarantee must cause sc to fail, while still accepting all valid
attempts to acquire exclusive access.

OpCode addrEq linkBit cData cAddrEn cLEnable c01
lw 0 X 00 0 0 X
lw 1 X 00 0, 1,

X*
1 0

ll X 0 00 1 1 1
ll X 1 00 0 1 0

sc 1 1 11 0, 1,
X*

1 0

sc 0 X 10 X 1 0
sc X 0 10 X 1 0

* accept either
For this problem, all that was necessary to receive full credit were the lines marked above. Extra lines added
with these signal combinations were permitted as long as no contradictions were made.

 8

Q6: Cache-Coherency (20 points)

The two state diagrams below show a three-state cache coherency protocol based on Invalid,
Shared, and Exclusive states. The first diagram on the left shows the cache controller from the
perspective of the processor and the second on the right from the perspective of the snooping
memory bus.

From the CPU side, a memory block not in the cache starts in the Invalid state. A CPU read causes a
memory access and a transition to the Shared state. You should interpret this state as implying that
the addressed memory block could be in another cache. Subsequent reads hit in the cache. A CPU
write causes a transition from Invalid or Shared to the Exclusive state, and a write miss transaction
is placed on the memory bus.

This causes other caches in the Shared state for this block to move to the Invalid state, and for a
cache in the Exclusive state to trigger a write back to memory as it transitions to the Invalid state. In
this latter case, the original memory access is aborted, causing the cache with the write miss to
restart its memory access. This is shown in the Bus side state diagram, described next.

From the Bus side, a write miss moves either the Shared or Exclusive states to Invalid. If the latter,
the memory block must first be written back to memory and the original CPU that generated the write
miss must restart its memory transaction. If the bus signals a read miss, the cache block transitions
from Exclusive to Shared after the block is written back to memory. Again, the reading cache must
restart its memory access.

Invalid State: No memory block in the cache block.

Shared State: The memory block in the cache block could also be in other caches.

Exclusive State: The memory block in the cache block is not in any other cache

Invalid	
Shared	
(Read	
Only)	

Exclusive	
(Read	
Write)	

CPU	Read	Hit	

CPU	Read	
Place	read	miss	on	bus	

CPU	Read	Miss	
Write	back	block	

CPU	Read	Hit	
CPU	Write	Hit	

CPU	Write	
Place	write	miss	
on	bus	

CPU	Write	
Place	write	miss	on	bus	

CPU	Read/Write	Requests	

Invalid	
Shared	
(Read	
Only)	

Exclusive	
(Read	
Write)	

Bus	Write	Miss	

Bus	Read	Miss	
Write	Back	Block;	
Abort	Memory	Access	

Bus	Write	Miss	
Write	Back	Block;	
Abort	Memory	Access	

Bus	Read/Write	Requests	

 9

Complete the following table.

Possible states are Invalid (I), Shared (S), and Exclusive (X).
Possible addresses are A1 and A2, which happen to map to the same cache block.
Possible values are 10, 20, and 40.
Possible (Bus) Actions are Write Miss (WM), Read Miss (RM), Read Data (RD), Write Data (WD).
Possible Processors are P1 and P2 for CPU1 and CPU2 respectively.

Note:

• Before the first write operation, all cache entries are I (for Invalid) and all memory data is all 0.
• Not every row and column needs to have an entry
• Some operations may trigger multiple state and bus action; fill in the boxes with the correct

sequence from top to bottom.

 P1 P2 Bus Memory
Step State Addr Value State Addr Value Action Proc Addr Value Addr Value
P1:
write
10 to
A1

X A1 10 WM P1 A1

P1:
read
A1

X A1* 10*

P2:
read
A1

S

A1*

10*

S

S

A1

A1

10

RM
WD
RD

P2
P1
P2

A1
A1
A1

10
10

A1
A1*

10
10*

P2:
write
20 to
A1

I A1* 10* X A1 20 WM P2 A1 A1* 10*

P2:
write
40 to
A2

X

A2

40

WM
WD

P2
P2

A2
A1

20

A1*
A1

10*
20

P1 read A1: Trivial.
P2 read A1: P2 transitions to the shared state to read A1. From the bus side, we see this memory

access gets aborted until P1 writes back the data block to memory. After doing so, the
memory access is attempted again.

P2 writes 20 to A1: A write miss is placed on the bus. The shared state of the cache line that the A1
block in P1 has is invalidated.

P2 writes 40 to A2: “From the bus side, a write miss moves either the shared or exclusive states to
invalid. If the latter, the memory block must first be written back to memory and the
original CPU that generated the write miss must restart its memory transaction.”
Keep in mind that A1 and A2 happen to “map to the same cache block.”

*: Elements not necessary (must be left blank if not included) but students still received points if they
included or left these out. Some students included memory values in each cell whereas some only
indicated when there were updates to values.

 10

Q7: Virtual Memory and Caches (20 points)
A hypothetical processor has 1-MiByte physical memory organized in 16 pages and separate (single-
level) instruction and data caches with 16-Byte blocks addressed with 4-bit index fields. Virtual
addresses are 19 bits wide. The tables below show partial contents. The data stored in the TLB, caches
and memory is consistent. On miss, the TLB fills from the D-Cache.
 TLB

Valid Tag/VPN PPN/DPN
1 0x3 0x7
1 0x7 0xb

 Memory
VPN Address Content (32b)

 0x20224 0x1000,0001
 0x20220 0x0000,0010
7 0x2021c 0x1000,000b
6 0x20218 0x0000,000a
5 0x20214 0x1100,0006
4 0x20210 0x1000,0002
3 0x2020c 0x1000,0007
2 0x20208 0x0000,0004
1 0x20204 0x1100,0000
0 0x20200 0x1000,0004
 0x201fc 0x1000,0005

 Caches (only valid entries shown)

I-Cache D-Cache
Index Tag Index Tag
0x0 0x3b5 0x1 0x202
0x0 0x400 0x0 0xb50
0x0 0xbb5 0x5 0x7b5
0x0 0x700 0x1 0x011

The page table is at address 0x20200. Each 32-bit entry is encoded as follows:

Bit 28 Bit 24 Bits 23 … 0
Valid bit Swap bit PPN/DPN

A Valid bit = 1 indicates that the page can be read or written to by the program. Accessing a page that
is not valid results in a segmentation fault.
A Swap bit = 1 indicates that the page has been swapped out to disk.

Now let’s assume that the processor executes load instructions lw $rd, 0($rs) where the instruction is
at location I-addr and the the value of $rs is D-addr. I-addr and D-addr are specified in the table
below. For each lw instruction calculate the physical addresses of the instruction and data, the
number of TLB-, instruction-, and data-cache misses, and the number of page faults.
Add comments describing the outcome of each load instruction. Only leave the comments field blank
in the case of 0 misses and 0 faults.

In the case of an error, you should specify possible errors (e.g. segmentation fault). Feel free to leave
the other fields blank in the case of an error as well.

Note that each instruction can suffer several faults. Treat each instruction in isolation, i.e. assume that
the contents of the memory and caches are as indicated in the tables above and have been not
changed by prior instructions.

 11

lw I-
paddr

D-
paddr

misses page
faults Errors / Comments I-addr D-addr TLB I$ D$

0x30000 0x75004 0x70000 0xb5004 0 0 0 0
0x70000 0x66544 0xb0000 seg fault segmentation fault
0x35008 0x7500c 0x75008 0xb500c 0 1 0 0
0x00200 0x70008 0x40200* 0xb0008 1 1 2 0 PTE and D not in D$
0x00203 0x7000a unaligned unaligned access
0x4000c 0x7b550 0x2000c* 0xbb550 1 1 1 0 instr TLB miss
0x14000 0x3b500 0x04000 0x7b500 1 1 2 1 instr page fault

Some students rightfully realized that I-addr’s interaction with the TLB would potentially affect the TLB hit/miss
for D-addr that took place immediately upon executing the instruction. Students did not have to
acknowledge/observe this to get full credit.

