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Clarifications during the exam: 
 
MT1 - depth question:  

1. struct node * edges[] should be  
struct node ** edges 

2. line in the prologue should read 
 sw $ra 0($sp) 

3. line after the epilogue should read  
lw $ra 0($sp) 

MT1-4: The label on Line 17 should be L2 
MT2-Floating Point: real: bits 8-15. imaginary: bits 0-7  
MT2-Clobbering Time:  
b. The cache is direct-mapped 
c. Memory accesses  = accesses in the for loop at part I 
F-1: c. What is the maximum number of virtual pages a process can use? 
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MT1-1: Potpourri - Good for the beginning… (8 points) 
  
a. True/False: 

i. The compiler turns C code into instructions ready to be run by a processor  F 
ii. The instruction addiu $t0 $t1 0x10000 is a TAL instruction  F 
iii. The linker computes the offset of all branch instructions  F 

 
b. Memory Management 

int global = 0; 
 
int* func() { 
    int* arr = malloc(10 * sizeof(int)); 
    return arr; 
} 
 
int main() { 
    char* str = "hello world"; 
    char str2[100] = "cs61c"; 
    int* a = func(); 
    return 0; 
} 

 
In what part of memory are each of the following values stored? 
*str: static 
str2[0]: stack 
a: stack 
arr: stack 
arr[0]: heap 
 
MT1-2: C-ing images through a kaleidoscope (8 points) 
 
Consider a grayscale image with a representation similar to the one you worked with in Project 4, 
where the image is represented by a 1-dimensional array of chars with length n x n. Fill out the 
following function block_tile. It returns a new, larger image array, which is the same image tiled 
rep times in both the x and y direction. You may or may not need all of the lines. 
 
For a better idea of what must be accomplished, consider the following example: 

char *image = malloc(sizeof(char) * 4); 
image[0] = 1; 
image[1] = 2; 
image[2] = 3; 
image[3] = 4; 
char *tiled_image = block_tile(image, 2, 2); 

 
The contents of tiled_image would then look like: 

tiled_image: [1, 2, 1, 2, 
              3, 4, 3, 4, 
              1, 2, 1, 2, 
              3, 4, 3, 4]; 

       i. False. The compiler turns C code into assembly code, not things to be passed into processor just yet
      ii. False. The immediate needs to be broken up as it is too long. Also, register names still need to be converted.
     iii. False. This is done in the Assembler (pass 1/pass 2)

    *str: Static. "hello world" is a string literal and string literals are stored in Static Data. Because this is a pointer and not an array, the pointer points to actual string literal. Thus, dereferencing the pointer leads to a value stored in Static Data.
 str2[0]: Stack. Although "cs61c" is a string literal, because we are assigning into an array and the array is a separate chunk of memory stored on the Stack, the string literal gets copied into str2. Thus, str2[0] exists on the Stack.
       a: Stack. We are declaring an integer pointer called a, which is stored on the stack.
     arr: Stack. arr is created in a function, thus is on the Stack.
  arr[0]: Heap. arr itself is stored on the stack, but we allocated memory in the Heap, which is what arr points to. So dereferencing arr yields a value stored in the Heap.
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char *block_tile(char *block, int n, int rep) { 
    int new_width = ____n * rep____________________________________; 
    char *new_block = malloc(__new_width * new_width * sizeof(char)____); 
    for (int j = 0; j < new_width; j++) { 
        for (int i = 0; i < new_width; i++) { 
            int old_x = _______i % n_________________________________; 
            int old_y = ____________j % n____________________________; 
            int new_loc = ____________j * new_width + i______________; 
            new_block[new_loc] = block[old_y * n + old_x]; 
        } 
    } 
    ________________________________________; 
    ________________________________________; 
    return new_block; 
} 

 
MT1-3: Easy questions have no depth – this one does (12 points) 
 
We’re interested in running a depth-first search on a graph, and labeling the nodes in the order we 
finish examining them. Below we have the struct definition of a node in the graph, and the 
implementation of the function in C.  
 
struct node { 
    int data; 
    int label; 
    int num_edges; 
    struct node* edges[];  
} 
 
 
 
 
 
 
 
Note that initially, all nodes in the graph have their  
label set to -1. The address width of our machine  
is 32 bits. 
 
int dfs_label(struct node* node, int counter) { 
 if (node->label != -1) { 
        return counter; 
 } 
 for (int i = 0; i < node->num_edges; ++i) { 
  counter = dfs_label(node->edges[i], counter); 

 blank 1: n * rep. This is because we have n-width per single picture and rep pictures wide.
 blank 2: new_width * new_width * sizeof(char). We need a square matrix with side length new_width. The sizeof(char) is needed because we weren't given the guarantee that a char is 1 byte.
 blank 3: i % n. i represents the column. We want our old_x to be the relevant column in our smaller picture. Because the column of the small picture repeats every n, we can just use modulo.
 blank 4: j % n. j represents the row. With the same logic as blank 3, we can use modulo.
 blank 5: j * new_width + i. Remember that our final array is 1-d, so we index into it accordingly.
 blank 6: Not needed as we finished creating the array already
 blank 7: Not needed as we finished creating the array already
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 } 
 node->label = counter++; 
 return counter; 
} 
 
Implement dfs_label in TAL MIPS. Assume node is in $a0 and counter is in $a1. You may not 
need all the lines provided. 
 
dfs_label: 
# prologue 
 addiu $sp $sp _-12_ 
 sw $ra ($sp) 
 sw $s0 4($sp) 
 sw $s1 8($sp) 
# base case 
 addiu $t1 _$0_ _-1_ 

__lw $t0 4($a0)__ 
 __addu $v0 $0 $a1__ 
 bne $t0 $t1 epilogue 
# loop 
 addu $s0 _$a0_ _0_  
 addiu $s1 $0 0 
loop: 
 lw $t0 _8($s0)_ 
 beq _$t0_ _$s1_ _fin_ 
 lw $a0 _12($s0)_       # load edges into $a0 
 sll $t0 $s1 _2_ 
 _addu $a0 $a0 $t0_    # load the next node 
 lw $a0 _0($a0)_        # into $a0 
 jal dfs_label 

addu $a1 _$v0_ _$0_ 
 addiu $s1 $s1 1 
 j loop 
fin: 
 sw $a1 _4(s0)_ 
 _addiu $a1 $a1 1_ 
 addu $v0 $0 $a1 
epilogue: 
 lw $ra ($sp) 
 lw $s0 4($sp) 
 lw $s1 8($sp) 
 addiu $sp $sp _12_ 
 jr $ra 
  

We need to make space for 3 registers to save on the stack 3 registers * 4 bytes/register = 12 bytes

Load in the -1 for comparison for the base case

Load in node->label for comparison for the base case 

Load in $a1 (counter) into the return value register to since epilogue doesn’t do that

Save node ($a0) in a saved register because of Caller/Callee

Load in node->num_edges into $t0

If i ($s1) is greater than $t0 (node->num_edges), we stop

Shift by 2 to go from index to byte offset (left shift by 2 == multiply by 4)

Put the return value ($v0) of dfs_label in to $a1 (counter)

Move the stack pointer back how much we moved it earlier

Increment counter (node->label = counter++)

Put counter into node->label
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MT1-4: Can’t reveal this MIPS-tery (8 points) 
 

 0| Mystery: 
 1|  add $t0, $a0, $0 
 2|  add $t1, $a1, $0 
 3|   
 4|  la $s0, L1 
 5|  lw $s1, 12($s0) 
 6|  addi $s2, $0, 6 
 7|  addi $s3, $0, 0 
 8|  addi $s4, $0, 1057       #$s4 contains 0b0100 0010 0001  
 9|  sll $s4, $s4, 11     
10|  
11| L1:   beq $s3, $s2, L2 
12|  addu $s1, $s1, $s4 
13|  sw $s1, 12($s0) 
14|  addu $t1, $a3, $t0 
15|  addi $s3, $s3, 1 
16|  j L1 
17| Done:   
 

 
a. When the above code executes, which line is modified? How many times? 

Line 14, 6 times 
b. Assume we run this block of code with $a0 = 1 and $a1 = 1; what is the value in $t2 at the end 

of the code execution? How about $t3? 
$t2 = 2, $t3 = 3 

c. In three sentences or less, how does this code affect the temporary registers? 
It takes the arguments $a0 and $a1 and stores then in registers $t0 

and $t1. Then for the remaining temporary registers, it sets register 
$t_{n} to $t_{n-1} + $t_{n-2}. 
 
MT2-1: Synchronous Finite State Digital Machine Systems (9 points) 
 
a. The circuit shown below can be simplified. Write a Boolean expression that represents the function 

of the simplified circuit using the minimum number of AND, OR, and NOT gates. 

  
 
~( ~(A) (B+~(C)))  = A + ~(B+(~C)) = A + (~B)C 

We load in L1 into $s0 on line 4. Then we sw $s1, 12($s0), meaning 3 instructions after L1 or line 14. We have a
counter $s3 which starts at 0 and ends when $s3 == $s2, and since $s2 starts at 2, we modify line 14, 6 times.

See part c as to how the temporary registers get affected. $t2 = $t1 + $t0 = 1 + 1 = 2
$t3 = $t2 + $t1 = 2 + 1 = 3

Important to note that $s4 is set up so that it 
changes each of the 3 register fields, adding one to every single register field
every time

~A

~C

B

B + ~C

A

A

(~A)(B + ~C)

~((~A)(B + ~C))

~((~A)(B + ~C))
= ~(~A) + ~(B + ~C)    DeMorgan’s Law
= A + (~B)(~(~C))        DeMorgan’s Law
= A + (~B)(C)
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b. Consider the finite state machine below which has 6 states, and a single input that can take on the 

value of 0 or 1. The finite state machine should output 1 if and only if 6 + the sum of all the input 
values is not divisible by 2 or 3. One transition has been provided; complete the remainder of the 
diagram.   
 
(Hint: If the sum of the inputs is a multiple of 6, then we have 6 + the sum of the inputs = 6n for 
some n. As 6n is divisible by 2, 6n cannot be prime.) 

 
All transitions going to 001 and 101 should output 1, as we get something 
in the form of 6n+1 and 6n+5 respectively. If you look at the 4 other 
cases, 6n, 6n+2, 6n+3, 6n+4, all numbers in these forms are divisible by 
either 2 and/or 3, and therefore can never be prime for n >= 1 (Which is 
what we have as we add 6 to the sum of all our inputs). Therefore for all 
transitions going to 000, 010, 011, and 101, we should output 0.  
 
c. Consider the following circuit. Assume registers have a CLK to Q time of 60ps, a setup time of 

40ps, and a hold time of 30ps. Assuming that all gates have the same propagation delay, what is 
the maximum propagation delay each individual gate could have to achieve a clock rate of 1GHz. 
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300 ps 
 
MT2-2: Do stray off of the well-worn datapath (11 points) 
 
Suppose we have a new instruction, bmeq. We branch if the value in memory at the address in $rs 
equals the value in $rt. The instruction format is as follows: 
 

bmeq ($rs) $rt offset 
 
Use the datapath diagram provided as a reference for input and output names. Assume we are 
working with a non-pipelined single cycle datapath. 
 
a. Write the register transfer language that represents the logic of this command. 

If MEM[$rs] == $rt PC = PC + offset << 2; else PC = PC + 4 
 

 
b. You are given a new control signal, BMEQ, which is 1 when it is a BMEQ instruction and 0 when it 

is not. In the following table, please fill in the inputs, control signal, and output destination for any 
additional MUXes you would need in order for this instruction to work correctly. You might not need 
all the lines. 

 
Inputs: ReadData1, ReadData2, ReadData, AluOut, MemoryData, PC 
Output destinations: Addr, ReadReg1, ReadReg2, WriteAddr, InputA, InputB, ReadAddr, WriteData 
 
Control Signal Input0 Input1 Output Destination 

BMEQ ReadData1 ALUOut ReadAddr 

BMEQ ReadData1 MemoryData InputA 

    

 

We have a clock rate of 1 GHz, which means that we have a maximum clock period of 1000 ps. Following the relevant formula, the critical path involves 3 combinational logic, one CLK-to-Q and one setup time, which equals 3 * CL + 60 ps + 40 ps = 1000 ps. Solving for CL, we see that 3 * CL = 900 ps, which means that CL = 300 ps.

Basically, we want to branch to PC + offset << 2 (since MIPS stores the offset in words) if the memory at $rs equals the value at $rt.
Otherwise we don’t branch like any other instruction and do PC += 4.

We want to choose between ALU (load/store) and also rs1 or ReadData1

We want our InputA into our ALU to either be ReadData1 (rs1) or MEM
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d. Fill in the values for the control signals for this new instruction. Use X if the signal does not matter. 
For ExtOp, write SIGN for sign-extension and ZERO for zero-extension. 

Reg 
Dst 

ExtOp RegWr ALU 
Src 

ALU 
Ctr 

Mem 
Wr 

Memto
Reg 

Branch Jump BMEQ 

X SIGN 0 0 X 0 X 1 0 1 

 
e. In ≤ 1 sentence, why can’t this instruction work with a normal pipelined 5-stage MIPS datapath? 
The execute stage now requires a data to be loaded in from memory. 
 
 
MT2-3: Enough stalling, that will only slow you down (9 points) 
 
Consider the standard 5-stage pipelined MIPS CPU with instruction fetch, register read, ALU, 
memory, and register write stages. Register writes happen before register reads in the same clock 
cycle, branch comparison is done during the register read stage, there is a branch delay slot, and 
forwarding is implemented. 
 
For the following stream of instructions, assume that $t0 is not equal to 0, so the branch is not taken. 
 

0| start: lw $t0 0($a0) 
1|   beq $t0, 0, end 
2|   addiu $t0, $t0, 10 
3|   sw $t0 0($a0) 
4| end: 

 
a. For each pair of instructions, circle whether the CPU needs to be stalled for the execution of the 

second instruction, and if so, for how many cycles.  
 

i. 0| start: lw $t0 0($a0) 
      1|  beq $t0, 0, end 

stall for 2 cycles 
 
ii. 1|  beq $t0, 0, end 

2|  addiu $t0, $t0, 10 
no stall 
 
iii. 2|  addiu $t0, $t0, 10 

3|  sw $t0 0($a0) 
no stall 
 

Logic in each stage of the pipeline has the following timing: 
Instruction Fetch Register Read ALU Memory Register Write 

150 ps 100 ps 100 ps 200 ps 100 ps 
 
The pipelining registers in between stages have the following timing: 

Clock-to-Q Hold time Setup 

We aren’t writing to a register so X for RegDst and 0 for RegWr, branch offset is either forward or backward so SIGN, ALU Src is 0 because we want to use the ALU
to compare. ALUCtr should actually be sub since we want to compare Mem and rs2. We aren’t writing to Memory, nor are we writing to register, so MemtoReg does
not matter. We are branching but not jumping.

SUB

$t0 isn’t ready until the end of MEM stage
IF ID EX ME WB
    IF  ID  EX  ME WB
If branch comparison occurs in the ID stage, we need to forward the result of ME
to the start of the IF stage, aka stall for 2 cycles:
IF ID EX ME WB
               IF  ID  EX  ME WB

IF ID EX ME WB
         IF  ID  EX  ME WB
We know if the branch is taken in ID, but because of the Branch Delay Slot, we already have
an implicit stall. Thus we know if the branch happens before we execute Line 2.

We can forward the result of $t0 (EX) to the beginning of the next EX, $t0 is at a minimum
needed by the ME stage, so no stall is needed. 
IF ID EX ME WB
         IF  ID   EX ME WB
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30 ps 20 ps 30 ps 
 
b. What is the minimum clock period, in picoseconds, for which the processor can run? 
260 
 
c. What is the time required, in picoseconds, that it takes for the CPU, starting from the first stage of 

the lw instruction, to finish the execution of the final sw instruction? You may use the variable 
stall_cycles in place of the sum of your answers for question a, and clock_period in place of your 
answer for question b. 

(8 + stall_cycles) * clock_period 
 
d. Which timing values, if lowered independently (all other timing remain the same), will allow us to 

increase the frequency of the CPU? Circle all that apply.  
 
Pipelining Register Clock-to-Q, Pipelining Register Hold time, Pipelining Register Setup time, 
Instruction Fetch, Register Read, ALU, Memory, Register Write 
pipelining register clock-to-q, pipelining register setup time, memory 
(can be either circled or not circled) 
 

MT2-4: If you do well, it’s clobbering time! (12 points) 
 
The information for one student in regards to clobbering a single midterm is captured in the data of 
the following tightly-packed struct: 
 

typedef struct student { 
 int studentID; 
 float oldZScore;   
 float newZScore; 
 int clobber;  /* a value equal to 1 if a student clobbers,  
        0 if otherwise */ 
} student; 

 
We run the following code on a 32-bit machine with a 4 KiB write-back cache. importStudent() 
returns a struct student that is in the course roster and that has not been returned by 
importStudent() previously. For simplicity, assume importStudent() does not affect the cache. 
 

int ARR_SIZE = 512; //Class size rounded down for simplicity 
student *61CStudents = (student *) malloc (sizeof(student) * ARR_SIZE);  
 
/* Assume malloc returns a cache block aligned address */ 
for (int i = 0; i < ARR_SIZE; i++) {        <=== part I 

61CStudents[i] = importStudent()  <- what does import student do? 
} 
 
for (int i = 0; i < ARR_SIZE; i++) {        <=== part II 
 if (61CStudents[i].oldZscore > 61CStudents[i].newZscore){ 
   61CStudents[i].clobber = 0; 
 } else { 

Because of our pipeline, we clock to the slowest stage. This means that the longest CL is from Memory,
resulting in 200 + CLK-to-Q + Setup = 260 ps. 

We have 4 instructions and thus 8 cycles assuming no stalls. This is because
IF ID EX ME WB, the last instruction doesn’t theoretically start until at least cycle 5
because of pipelining and Branch Delay Slot.

Basically all the parts that contributed to the critical path.



 

 
 
a. How many bytes is needed to store the information for a single student? 
The struct has 4 fields, each of 4 bytes, so 16 bytes 
 
b. Assume that the block size is 32 B. What is the tag:index:offset breakdown of the cache? 
The final clarifications told the students to assume a direct mapped cache. Thus, if the cache size 
is 4KiB (2^12), and the block size is 32 B (2^5), there must be 2^12/2^5 = 2^7 blocks. Thus, 
there are 7 index bits, 5 offset bits, and 20 tag bits. 20:7:5 
 
c. At the label part I, assume that 61CStudents is filled with the correct data. What type of misses 
will occur from memory accesses during the process? Why? 



The misses that will occur from executing the for loop at label part I will be compulsory misses, 
because the loop will be accessing student structs that will be accessed for the first time. 
 
d. Suppose we run the code again and the cache block size is now 8 B long and the cache is 
direct mapped. For the for-loop in part II, what is the miss rate in the best case scenario (we want 
the highest hit rate possible)? What type of misses occur? 
The if-else block in part II has 3 memory accesses. Since half of the struct fits in a block of the 
cache, 61CStudents[i].oldZscore would be a miss and load the first two elements of the struct 
into a block, 61CStudents[i].newZscore would be a miss and load the last two elements of the 
struct into a block, and 61CStudents[i].clobber would be a hit in the second block loaded in. 
Thus, the miss rate is 2/3. These misses are capacity misses because even if the cache was fully 
associative, the array of structs does not fit in this cache, and entries would have to be evicted 
due to the cache size in the fully associative case. 
 
 
e. For the for loop in part II, assume that the cache block size is now 128B. 
 i. If the cache is direct-mapped, what is the hit rate? 
 8 students per block. 3 memory access per student, 1 miss and 23 hits, so 23/24  
 
 ii. If the cache is fully associative, what is the hit rate? Does associativity help? Why or 
why not? 
 It would still be 23/24, because the array is being accessed sequentially, so associativity 
makes no difference. 
 

 
a. Convert 0xB248 into the complex number form a + bi 
0xB248 -> 0b1011 0010 0100 1000 



For the real part, significand is 0010, exponent is 011, sign is 1. If we convert the exponent to 
bias, we actually get an exponent of 0. Thus, converting the significand to normalized form gives 
-1.001 in binary, which is -1.125 in decimal. 
 
For the imaginary part, significand is 1000, exponent is 100, sign is 0. If we convert the exponent 
to bias, we get an exponent of 1. Thus, converting the significand to normalized form gives 1.1 * 
2^1 in binary (which equals 11.0… in binary), which is just 3. 
 
Thus -1.125 + 3i is the answer. 
 
b. What is the smallest positive number you can represent with a nonzero real component and 
zero complex component? 
For the positive component, the smallest exponent possible is 0 and the smallest significand is 
0001. Remember, this is denormalized because the exponent is zero, thus the bias is always the 
negative of one smaller than the positive bias (-2). Converting this to normalized form gives 
0.0001*2^-2 in binary, which is 0.000001 = 2^-6 

 
c. Ignoring infinities, which of the two representations presented above can represent a number 
with the larger magnitude.  
The midterm floating point representation can represent 2^6 in magnitude. For the complex 
number representation, if you had the largest exponent in the real and the imaginary part 
possible, and took the magnitude per the equation in the directions, your exponent would be 2^5 
(due to the square root). Thus, the midterm floating point representation is larger in magnitude. 
 
F-1: You may need to context switch for this question 
 
The system in question has 1MiB of physical memory, 32-bit virtual addresses, and 256 physical 
pages. The memory management system uses a fully associative TLB with 128 entries and an 
LRU replacement scheme. 
 
a. What is the size of the physical pages in bytes? 
Physical page size is going to be the size of physical memory divided by the number of pages in 
physical memory. 1MiB = 2^20 and 256 pages = 2^8, thus 2^20/2^8 = 2^12 bytes 
 
b. What is the size of the virtual pages in bytes? 
Virtual and physical pages are always the same size, thus 2^12 bytes. 
 



c. What is the maximum number of virtual pages a process can use? 
Similar to part a, the number of pages in virtual memory will be the size of virtual memory 
divided by the size of a page. Virtual memory in this case is 2^32 bytes, thus 2^32/2^12 = 2^20 
pages. 
 
d. What is the minimum number of bits required for the page table base address register? 
The page table base register holds a physical address which is a pointer to the start of the page 
table for the current running process. Thus, since this register holds a physical address, and every 
physical address is 20 bits (because physical memory is 2^20 bytes), 20 bits are needed. 
 
Everybody Got Choices 

i. The page table is stored in main memory. True, page table must be stored in memory to 
be able to be used. 
 
ii. Every virtual page is mapped to a physical page False, for a couple reasons that I can 
think of. Virtual memory is usually much bigger than physical memory, so every virtual 
page cannot be mapped to a physical page. Also, the operating system may prevent some 
virtual pages to be mapped to physical pages for access reasons (restricted memory 
regions) 
 
iii. The TLB is checked before the page table Definitely True 
iv. The penalty for a page fault is about the same as the penalty for a cache miss False. 
Pages are much bigger than cache blocks, and disk is much slower than memory, so 
reading a page from disk into memory is much slower than reading a block from memory 
into a cache 
v. A linear page table takes up more memory as the process uses more memory False. 
The basic page table we cover is a linear page table, which is stored all in memory with 
enough indexes for all of the virtual page numbers. If the process uses more memory, 
more entries in the page table will be valid (valid bit set to 1), but the page table will 
always be the same size. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Correctness: The answer is actually A, always correct, contrary to the published solutions. This 
is simply due to the fact that because this code block is wrapped in #pragma omp parallel, every 
thread will simply be overwriting the result array with the same numbers in each index. This can 
be proved formally by induction, but the simple explanation is that since result[0] is always 0 for 
all threads, and every thread will calculate the same sum in the inner for loop, then result[1] must 
be the same for all threads, even if they overwrite one another. If result[1] must be the same for 
all threads, and they all calculate the same sum in the inner for loop, then result[2] must be 



correct for all threads. This same argument can be made for the rest of the result array. result[0] 
is the key element that makes this code always correct. 
 
Speed: C, Slower. Due to the overhead of spawning multiple threads to complete the same 
iterations for all of the for loops. 
 

 
 
Correctness: B, Sometimes correct. This is because of the data dependency on the previous 
element of result in the last line of code. If result[i-1] is not calculated, result[i] will be wrong. 
However, in theory, if all of the threads lined up and were scheduled such that result[1] was 
calculated, then result[2], then result[3], etc., then this code would be correct. 
 
Speed: A, faster. Because we split up the outer for loop between threads, this outer for loop can 
be done concurrently, which would be faster than the naïve version. The critical section just 
applies to adding to the result array. 



 
 
Correctness: A, always correct. This is because the inner for loop is parallelized to many 
threads, and preserves the correctness of the sum variable with the reduction keyword. The result 
array is written to sequentially by in the outer for loop with no false sharing/race conditions. 
 
Speed: A, faster. This is because we can assume that the parallel for in the inner for loop speeds 
up the execution of the loop enough to dwarf any overhead. Thus, this code would run faster than 
the naïve version. 
 
d. Consider the correctly parallelized version of the serial code above. 

i. Could it ever achieve perfect speedup? F. Amdahl’s law says that speedup is limited by 
the non-parallelizable portion of any code, and that perfect speedup is not possible.  
 
ii. What law provides the answer to this question? Amdahl’s Law, per above 



 
MapReduce 
map(user_id, friend_ids): 
 for friend in friend_ids: 
  emit(friend, friend_ids) 
 
In our map phase, we want to somehow associate a user with their second degree friends. The 
key here is to recognize that every friend in a user_id’s friend_ids list is a second degree friend to 
every other friend in that list (linked through the user_id). Thus, we want to emit the tuples 
(friend, friend_ids) to signify that friend is second degree friends with everyone else in a 
user_id’s friends list. 
 
reduce(key, values): 
 second_degree_friends = set() 
 for value in values: 
  second_degree_friends.add(value) 
 second_degree_friends.remove(key) 
 emit(key, second_degree_friends) 
 
In reduce, we simply combine all of the second degree friends lists which correspond to a 
specific user, and then remove that user from the list of second degree friends. 
 
 
 
 
 
 



Potpourri 
a. We have a hard drive with a controller overhead of 5 ms. The disk has 12000 cylinders, and it 
takes 2 ms to cross 1000 cylinders. The drive rotates at 2400 RPM, and we want to copy half a 
MB of data. Our hard drive has a transfer rate of 500 MB/s. What is the access time of a read 
from disk?  
 
We want to add up the times that it takes to access this disk. We add them up in the following 
order: Seek + Rotation + Transfer + Controller. The number of tracks in the seek time is always 
number of tracks/3, Rotation time is averaged by taking half of the time to rotate around a disk. 
  
12000/3 * 1/(24000/60/2) + 2/1000) + 1000 * 1000*((1/2)/500) + 5ms = 15.25 ms  
 
 
b. I launched a new online app at the start of this year (2015), and I want to have at least three 
nines of availability per year. Up until today, my app has been available at all times this year. 
However, some malicious hackers crashed my app for today; it took me 4 hours to get it back up 
again. For the rest of this year, what is the most downtime I can have on my app to meet my 
availability goals, rounded to the closest hour? (There are 8760 hours this year)  
 
We want the ratio of downtime to number of hours in the year to be 0.999, as this is the 
availability of the app. Thus, we solve for the equation (4+x)/8760 = 0.999 = 5 hours 
 
Another way to think about it is that we know that the app can only be down for 0.001 of the 
year. 8760*0.001 = 8.76, so we round up to 9 hours of downtime total per year. Since the app 
was already down for 4 hours today, we know we have at most 5 more hours of downtime for the 
rest of the year. 
 
c. c. If a receiver checks the header and the checksum is correct, what does it do? (In ≤ 1 
sentence)  
 
Ack 
 
When a packet header and contents have been verified to be correct by a receiver, it will Ack that 
the packet has been received (send an Ack packet back to the sender). The receiver can then 
continue to process the packet payload. 
 
d. For the standard single-error correcting Hamming code presented in class, is the 12-bit code 
word 0x61C corrupted? What is the correct data value in decimal format?  
 
 
0x61C = 0b0110 0001 1100 P1: 0 ^ 1 ^ 0 ^ 0 ^ 1 ^ 0 = 0 P2: 1 ^ 1 ^ 0 ^ 0 ^ 1 ^ 0 = 1 P4: 0 ^ 0 ^ 0 
^ 0 ^ 0 = 0 P8: 1 ^ 1 ^ 1 ^ 0 ^ 0 ^ 0 = 1 0x61C = 0b0110 0001 1100 => 0b0110 0001 1000 = 
0b1000 1000 = 128 + 8 = 136 
 
 
 



e. True/False  
i. Raid 4 allows for concurrent independent writes to disk. F 
Raid 4 is limited by writes to the parity disk. Since every write to any of the disks in the 
system must also write the parity disk, concurrent independent writes are not possible in 
Raid 4 
 
ii. Raid 5 allows for concurrent independent writes to disk. T 
Raid 5 solves the problems that Raid 4 has with a parity disk by spreading the parity 
blocks among the disks, so concurrent independent writes can happen. 

 
iii. Raid 5 allows for concurrent independent reads to disk. T 
Reading is not an issu 
 
iv. IP guarantees delivery F 
IP provides best-effort delivery in the network layer, and provides no guarantees of end 
to end packet delivery. It is up to higher layers in the network stack (TCP) to detect and 
deal with packet failures. 

 


