UC Berkeley : CS61C (Garcia \& Lustig) : Midterm Part 2 : 2014-10-17

Question 1: Hit or Miss, it's AMAT-er of Performance ($24 \mathrm{~min}, 19 \mathrm{pts}$)

You are given a single 8 KiB direct-mapped cache with 256 B blocks and a write-back policy.
Assume a 32-bit address space and byte-addressed memory. Show your work.
a) Label the fields below as Tag, Index, and Offset, and give the \# of bits for each. (e.g. Tag:5) (3 pt)

$\mathrm{T}: 19$	$\mathrm{I}: 5$	$\mathrm{O}: 8$
31	0	

b) Assume that $\mathrm{A}_{[0]}$ is at the beginning of a cache block and that the cache is empty to begin with. Answer the questions below based on the following code.

```
Char A[32768]; // 32768 is 2^15
for (int i = 0; i < 32768; i+=64) A[i] = "\0'; // 1 1 LOT}LOO
for (int i = 0; i < 32768; i+=64) A[i & 1] = '\0'; // 2 nd LOOP
```

i. What is the exact hit rate for the $1^{\text {st }}$ LOor? Leave your answer as a fraction. (3 pt)
ii. Which of the following types of misses occur in part (i)? (circle only one) (2 pt)
Compulsory Conflict Neither $\quad \rightarrow$ Both \leftarrow
iii. What is the exact hit rate on the $2^{\text {nd }}$ LOop? Leave your answer as a fraction. (3 pt)

$$
\left(2^{\wedge} 9-1\right) /\left(2^{\wedge} 9\right)=511 / 512
$$

c) Suppose we run some code and our L1 cache hits in 2 cycles and has a local hit rate of 80%. Main memory always hits in 50 cycles. What is the AMAT of this system? (3 pt)

$$
2+0.2 * 50=12 \text { cycles }
$$

d) Match each term with all letters on the right that apply (you may have multiple per blank). (5 pt)
\(\left.$$
\begin{array}{ll}\text { Interpreter } & \begin{array}{l}\text { A) Converts C code into Assembly } \\
\text { Compiler }\end{array} \quad \begin{array}{l}\text { B) Copies program binary to memory to prepare for execution }\end{array}
$$

Assembler \& C) Converts from MAL to TAL\end{array}\right]\)| Linker | D) Computes the jump address for a jal instruction |
| :--- | :--- |
| Loader | E) Computes the offset for a beq instruction |
| F) Directly executes a program written in source code | |

Question 2: What's that funky smell?! Oh yeah, it's potpourri... (26 min, 20 pts)
a) We examine a word in memory and find that it holds the value 0×20707 coo.
i. If it were a TAL MIPS instruction, what would it be? (Leave immediates and jump addresses in hexadecimal form.) Show your work. (2 pt)
addi \$s0, \$v1, 0x7C00
ii. If the word held two half-precision floating point numbers (1 sign bit, 5 exponent bits, 10 significand bits, bias = 15), what would they be? Leave your answer as an expression involving powers of twos. Show your work. (4 pt)
0×2070
$\left(1+2^{-4}+2^{-5}+2^{-6}\right)^{*} 2^{-7}$
$0 \times 7 \mathrm{C00}$
positive infinity
b) Consider the following valid MAL MIPS code. (Note that line 6 is commented out.)

```
1 mystery: ### Below, assume $t0 is either 0x0 or between 0x61 and 0x7a inclusive
2 loop: lbu $t0, 0($a0)
3 beq $t0, $0, done
4 addiu $t0, $t0, -32
5 sb $t0, 0($a0)
### jal anotherFunction
7 addiu $a0, $a0, 1
8 j loop
done: jr $ra
```

i. In English, describe what effect this code has. Do NOT tell us line by line what it does! (3 pt)

Converts a lowercase string to uppercase in memory
ii. Suppose we uncomment line 6 . What changes are needed for mystery to follow calling conventions? Assume you're telling another 61C student over the phone. For each addition or deletion or modification, describe it and its location in the code. (4 pt)

Before 6: addi $\$$ sp $\$$ sp -8, store $\$ a 0$, $\$$ ra on the stack. After 6: restore $\$ a 0$, $\$$ ra and put $\$$ sp back
iii. Write a single logical TAL instruction that performs the same effect as line 4 (remember, sto will be between 0×61 and $0 \times 7 \mathrm{a}$). (3 pt)

```
andi $t0, $t0, 0xDF
```

c) Fill in the blanks to indicate when overflow occurs in 2's complement numbers: In the blanks place one of: "greater than 0", "less than 0 ", "greater than or equal to 0 " or "less than or equal to 0 " (2 pt)
Positive Number + Positive Number, overflows if result is \qquad . <0
Negative Number + Negative Number, overflows if result is ___ ≥ 0
d) What is the decimal value of the int16_t number 0×8000 ? How does it relate to the advantages of two's complement over one's complement? (2 pt)
The decimal value is -2^{15}. Two's complement has only one zero, which means that one additional negative integer can be represented.

