
UC Berkeley : CS61C (Garcia & Lustig) : Midterm Part 2 : 2014-10-17

_________________________________ __________________________ cs61c-__________
Name (first last) SID Login
____________________________________ _____________________________________
ç Name of person on left (or aisle) Name of person on right (or aisle) è

Question 1: Hit or Miss, it’s AMAT-er of Performance (24 min, 19 pts)
You are given a single 8 KiB direct-mapped cache with 256 B blocks and a write-back policy.
Assume a 32-bit address space and byte-addressed memory. Show your work.

a) Label the fields below as Tag, Index, and Offset, and give the # of bits for each. (e.g. Tag:5) (3 pt)

b) Assume that A[0] is at the beginning of a cache block and that the cache is empty to begin with.

Answer the questions below based on the following code.

char A[32768]; // 32768 is 2^15

for (int i = 0; i < 32768; i+=64) A[i] = ‘\0’; // 1st LOOP
for (int i = 0; i < 32768; i+=64) A[i & 1] = ‘\0’; // 2nd LOOP

i. What is the exact hit rate for the 1st LOOP? Leave your answer as a fraction. (3 pt)

3/4

ii. Which of the following types of misses occur in part (i)? (circle only one) (2 pt)

Compulsory Conflict Neither èBothç

iii. What is the exact hit rate on the 2nd LOOP? Leave your answer as a fraction. (3 pt)

(2^9 – 1)/(2^9) = 511/512

c) Suppose we run some code and our L1 cache hits in 2 cycles and has a local hit rate of 80%.

Main memory always hits in 50 cycles. What is the AMAT of this system? (3 pt)

2 + 0.2 * 50 = 12 cycles

d) Match each term with all letters on the right that apply (you may have multiple per blank). (5 pt)

Interpreter _____F
Compiler _____A
Assembler _____C, E
Linker _____D
Loader _____B

T:19 I:5 O: 8
0 31

A) Converts C code into Assembly
B) Copies program binary to memory to prepare for execution
C) Converts from MAL to TAL
D) Computes the jump address for a jal instruction
E) Computes the offset for a beq instruction
F) Directly executes a program written in source code

Question 2: What’s that funky smell?! Oh yeah, it’s potpourri… (26 min, 20 pts)
a) We examine a word in memory and find that it holds the value 0x20707C00.

i. If it were a TAL MIPS instruction, what would it be? (Leave immediates and jump
addresses in hexadecimal form.) Show your work. (2 pt)

 addi $s0, $v1, 0x7C00

ii. If the word held two half-precision floating point numbers (1 sign bit, 5 exponent bits, 10

significand bits, bias = 15), what would they be? Leave your answer as an expression
involving powers of twos. Show your work. (4 pt)

0x2070

 (1 + 2-4 + 2-5 + 2-6) * 2-7

0x7C00

positive infinity

b) Consider the following valid MAL MIPS code. (Note that line 6 is commented out.)

1 mystery: ### Below, assume $t0 is either 0x0 or between 0x61 and 0x7a inclusive
2 loop: lbu $t0, 0($a0)
3 beq $t0, $0, done
4 addiu $t0, $t0, -32
5 sb $t0, 0($a0)
6 ### jal anotherFunction
7 addiu $a0, $a0, 1
8 j loop
9 done: jr $ra

i. In English, describe what effect this code has. Do NOT tell us line by line what it does! (3 pt)

 Converts a lowercase string to uppercase in memory

ii. Suppose we uncomment line 6. What changes are needed for mystery to follow calling
conventions? Assume you’re telling another 61C student over the phone. For each addition
or deletion or modification, describe it and its location in the code. (4 pt)

Before 6: addi $sp $sp -8, store $a0, $ra on the stack. After 6: restore $a0, $ra and put $sp back

iii. Write a single logical TAL instruction that performs the same effect as line 4
(remember, $t0 will be between 0x61 and 0x7a). (3 pt)

 andi $t0, $t0, 0xDF

c) Fill in the blanks to indicate when overflow occurs in 2’s complement numbers: In the blanks place

one of: “greater than 0”, “less than 0”, “greater than or equal to 0” or “less than or equal to 0” (2 pt)

Positive Number + Positive Number, overflows if result is ______________________________.<0

 Negative Number + Negative Number, overflows if result is _____________________________.≥0

d) What is the decimal value of the int16_t number 0x8000? How does it relate to the advantages of

two’s complement over one’s complement? (2 pt)
 The decimal value is -215. Two’s complement has only one zero, which means that one additional
negative integer can be represented.

