
2005Fa CS61C Final Exam Answers  
[not to leave 385 Soda] 
 
M1:Numbers 
 
a) Overall bit patterns? 232 = 4,294,967,296 (the exact # is not required; roughly a bit more than 

4,000,000,000) 
How many encode a valid BCD? 8 decimal digits, so 108 = 100,000,000 
Ratio is 232/108 = 42.94967296 ≈ 40 (to one significant figure). 

 
b) Each pixel is independent, and there are 4x8=32=25 of them, so it’s 432 = (22)32 = 264  

= 16 exbi images. 
 
c) Comparing floats using signed int compare, huh? The relative ordering of all positive 

numbers is the same (increasing from 0 to max_positive) for both encodings, so comparing two 
positive floats with signed compare works. Also, for both encodings the bit patterns for 
negative numbers all start with a leading 1 (0x80000000 through 0xFFFFFFFF) so comparing a 
negative float with a positive float using signed int compare will also yield the correct 
answer. However, when comparing two negative floats, the sign-magnitude nature of floats 
means that as we increase the bit patterns from (0x80000000 through 0xFFFFFFFF) floats 
move from 0 toward -∞, but signed ints move the other way from -∞ (-231, really) toward 0. 
Thus, we will get an incorrect answer when comparing two different negative numbers. 

 
d) Put the corresponding letters for each 32-bit value in order from least to greatest: 
 

A. 0xF0000000 (IEEE float) = - huge 
B. 0xF0000000 (2's complement) = -231 + 230  + 229 + 228 
C. 0xF0000000 (sign-magnitude) = -(231 – 228) = -231 + 228 
D. 0xFFFFFFFF (2's complement) = -1 
E. 0xFFFFFFFF (1's complement) = -0 
F. 0xF1000000 (IEEE float) = - huger 
G. 0x70000000 (IEEE float) = + huge 
H. 0x7FFFFFFF (2's complement) = 231 - 1 
I. 0x80000010 (IEEE float) = - small denorm (value doesn’t matter) 

 
f, a, c, b, d, i, e, h, g 

 



M2:C 
 
a)     static stack heap 

1: 4+16+4+4=28 B 0 0 
3: 0 28*2 + 2*4 = 64 B 0 
4: 0 0 280 B 
 

b) Two solutions…Longest (with the best style) 
 

int Delete (slicenode_t *plan) { 
  if(plan->type == RECTANGLE) { /* leaf */ 
    free(plan);  
    return(1);  
  } 
  else { 
    if plan->type == CUT) { /* inner node */ 
      slidenode_t *L, *R; 
      L = plan->L; R = plan->R; 
      free(plan); 
      return(1+Delete(L)+Delete(R)); 
    } else { 
      printf("Delete(): plan->type was %d, expected %d or %d", plan->type, RECTANGLE, 
CUT); 
      exit(1); 
    } 
  } 
} 

 
… and longest! 
 

int Delete (slicenode_t *plan) { 
  if(plan->type == RECTANGLE) { /* leaf */ 
    free(plan);  
    return(1);  
  } 
  else { 
    slidenode_t *L, *R; 
    L = plan->L;  
    R = plan->R; 
    free(plan); 
    return(1+Delete(L)+Delete(R)); 
  } 
} 

 
… and shortest! 
 

int Delete (slicenode_t *plan) { 
  if(plan->type == RECTANGLE) { 
    return(1+(0*free(plan)));  
  } 
  else { /* inner node */ 
    return(1+Delete(plan->L)+Delete(plan->R)+(0*free(plan))); 
  } 
} 



M3:MIPS->C 
 
a) char *foo (char *src, size_t size) { 

// forgetting sizeof(char) below is ok 
char *dest, *d, *end; 
dest = (char *) malloc ((size+1)*sizeof(char)); 

 
 for (d=dest,end=src+size; d != end; d++, src++) { 
  *d = *src | 0x20; 
 } 
 
 *d = 0; 
 return dest; 
} 
 
b) strnlowercasecpy (make lowercase)  

We’ll also accept a name that doesn’t reference the size, like strlowercasecpy 
 
c) Two possibilities, each equally valid 

• Memory leak! (You call malloc but never free the space…).  
• We don’t check whether malloc will fail! (which ties into the previous reason; if you 

leak memory and call printf(“..”,foo()) lots of times, eventually this error will 
come up. It comes up quicker if size is big! 

 
d) Here are the things it could do 

• Segmentation Fault (you run off the end of the string into an unallocated area) 
• Prints the output of foo correctly 
• Prints the output of foo followed by some garbage 

 



F1:Datapath 
 
srjr $ra, $sp, 16 
 

a) R[rt] = R[rt] + (ZeroExt(Imm) << 2); PC = R[rs] 
 
b) 256 kibi (16 unsigned 0xFFFF bits of words = 18 unsigned bytes)  

 
c) 

i. Add mux so Ra input is sometimes Rs, sometimes Rt, call the control signal RegSrc 
ii. Modify Extender so that it can do a “ZeroShiftExtend”, widen ExtOp control line 
 

d) 
• RedDst=rt (0) 
• RegWr=1 
• nPC_sel=Jump 
• ExtOp=ZeroShiftExtend 
• ALUSrc=Extender (1) 
• ALUctr=ADD 
• MemWr=0 
• MemtoReg=ALU (0) 
• [NEW]RegSrc=Rt 

 



F2:Cache/VM 
 
a) With 8-byte blocks (3 bits for offset) and a fully associative cache (0 bits for index), and a MIPS 

machine (32-bit addresses), we have 29:0:3 
 
b) The cache size, or “area” is the “height” (128 = 27 blocks) times the “width” (8 B/block = 23 

B/block),  
which is 210 bytes i.e., 1 KibiByte. 

 
c) To minimize cache misses, we should never stride so far that the initial sum loop couldn’t fit 

entirely into the 128-entry cache. So the farthest we could stride is the entire size of the cache, 
or 1 KiB. Any stride smaller than that will also have the property that the sum loop has a miss 
for each block but the product loop has all hits. 

 
d) Each block loaded by sum will be a miss, but product’s requests will be all hits. If the stride is 

1 KibiB, that’s 27 misses for each of the outer loop iterations, and there are 4 MiB / 1 KiB (= 4 
Ki) = 212 iterations. So that’s 27 misses/iteration * 212 iterations = 219 misses = 512 KiMisses. 

 
e) If we are not page-aligned, what will happen is that the last page request for sum will kick the 

first page out. As a result, the first page request for product won’t be there, and we’ll be 
charged a page miss! The problem propagates, unfortunately. That is, the first product page we 
just loaded will kick the second sum page out (since it’s the last to be accessed) so when the 
second product page comes by it will also have a miss! So basically you have no cache savings 
at all! However, there’s a small detail. When we shift our machinery down another stride and 
increment i (which we do a total of 212 times), the last block loaded by the product loop will 
be the first one requested by the sum loop! (But that’s a really small detail) So the answer is 
simple – with block alignment every sum is a miss and every product is a hit. Without block 
alignment every sum is a miss AND every product is a miss. Thus we double our misses. 

 
f) Sure, Virtual and Physical address widths are independent. The VA width how much (virtual) 

memory our program thinks we have (here 32-bits of it) and PA controls how much resident 
memory we have, a completely independent quantity. 

 
g) Sure, because we could have more resident pages (for the OS, other processes [either ours or 

another users]) and there’d be less thrashing. 
 
h) The and instruction was the last instruction in the page and the or is the first instruction in the 

next page and we just experienced a page fault! Since pages are 4 KiB, the last instruction must 
have the LS bits be page size – 4B, so we know the last three nibbles (offset) are 0XFFC. (i.e., 
one more instruction and the offset becomes 0x000 – a new page!) 

 



F3:Pipelining 
 
a) Here is the chart 
 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  
1 F D E M W0              Start @ 1 
2  F D D D0 E M W1           Stall for $a0 to be written 

before it can be read (no 
forwarding) 

3   F     D1 E M W1        Stall for $a1 to be written 
before it can be read (no 
forwarding) 

4        F   D1 E M W     Stall for $a1 to be written 
before it can be read 

5           F D E M W1    Stall until the above inst 
finishes before I can 
finish (no out-of-order 
exec!) 

6            F D E M W   No hazards; proceed as 
normal 

7              F D E M W Stall because we have 
non-delayed branches 
but we don’t know which 
instr to take until after 
the 2nd stage 

 
b) Here’s the chart with the addition of forwarding and delayed branches 
 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  
1 F D E M W0              Start @ 1 
2  F D E M1 W             $a0 is forwarded from 

ALU->ALU 
3   F  D1 E M W           Standard load delay 

stall because we need 
to wait for the data from 
memory (to eventually 
be stored in $a1), 
which is forwarded to 
the ALU. 

4     F D1 E M W          The value of $a1 is 
forwarded to the 
memory’s “data in” line. 

5      F D E M W         No hazards, proceed 
as normal 

6       F D E M W        No hazards, proceed 
as normal 

7        F D E M W       Branch-delay slot is 
filled, no need to stall 

 
 



F4:SDS 
 
F4a) From S00 we have two transition possibilities, I=0 and I=1. I’ve felt it useful to think about 
the past values I(t-2), I(t-1) and I(t) to figure out where to go. This is a simple box (a shift 
register) that keeps the last two values in the state variables Sx and Sy. Every step we output ~Sx + 
~Sy + ~I = ~P1 + ~P0 + ~I. Also every step N1=P0, N0=I. We don’t even need a truth table to 
know this – it’s part of the definition of Sxy. 
 
 PP I    OO  NN (Input/Output label for edge)  [#ZI(ABC) = NumberOfZerosIn(P1,P0,I)] 
 10      10  10 
-------------- 
S00 0  11 S00 (0/3) # Had two 0s, another one means we stay here and output #ZI(000)=3 
S00 1  10 S01 (1/2) # This is our first 1 in a while, register we’ve seen a 1 by  
                      # setting I(t-1) to 1 (i.e., S01) and output #ZI(001)=2  
S01 0  10 S10 (0/2) # Saw a 01 before but this 0 means we goto S10 and output #ZI(010)=2 
S01 1  01 S11 (1/1) # This is the 2nd 1 in a row, go to S11 and output #ZI(011)=1 
 
S10 0  10 S00 (0/2) # Saw a 1 2 timesteps ago, nothing since. Goto S00,output #ZI(100)=2 
S10 1  01 S01 (1/1) # Saw a 1 2 timesteps ago, a 1 now. Goto 01, output #ZI(101)=1 
 
S11 0  01 S10 (0/1) # Saw 2 straight 1s, now a 0. Goto S10, output #ZI(110)=1 
S11 1  00 S11 (1/0) # Everything is coming up 1s! Stay here (in S11), output #ZI(111)=0 

 
 
 
 
 

 
F4b) 
 
Fully reduced expressions for O1,O0 and N1,N0, huh? Well, some are easier than others. We’ll do the 
easier ones first. Looking at the truth table (not doing the mindless sum-of-products calculation), we 
see: 
 
N0=I 
N1=P0 

 
Which we already knew from part (a)! There are no names for these circuits. Let’s now look at O1 
and O0. If we’re extremely clever, we remember the two bit patterns for an adder’s two output bits: 
O1 is a minority circuit and O0 is a 3-input xnor. Let’s see if we can figure that out even if we don’t 
remember these facts. Let’s study the truth table and look at the negative spaces (the times when the 
output is zero). We see when P1 is 0 O0 looks like xnor(P0,I) = ~(P0 ⊕ I). When P1 is 1 O0 looks 
xor(P0,I) = (P0 ⊕ I). That is, P0⊕I is being conditionally inverted by P1, which is what an xor 
does! From this, we see that 
 
O0 = ~[P1⊕(PO⊕I)], i.e. the post-negation of two cascaded xors, which is the same as a 3-input 
xnor! 
 
O1 is a little harder. We can still study the table and see some patterns. That is, when P1 = 0, O1 
looks like nand(P0,I) = ~(P0*I). When P1=1, O1 is like a nor(P0,I) = ~(P0+I). This yields 
 

S00 S01 

S10 S11 

0/3 1/2 

1/1 

1/0 0/1 

0/2 

1/1 
0/2 



     __  ____        ____ 
O1 = P1*(P0*I) + P1*(P0+I) 
     __  __ _        __ _ 
   = P1*(PO+I) + P1*(P0*I)   # DeMorgan’s law 
     __ __   __ _      __ _ 
   = P1 P0 + P1 I + P1 P0 I  # distribution 
 
Now it might look like this is minimal, but we can check two ways that it’s not. First, there’s 
symmetry to the bit patterns (the expression is true whenever at least two of the three components 
P1,P0 or I are false) BUT there’s not symmetry to the expression. Also, we can see that ~P0~I 
yields a 1 in O1 independent of P1 from the truth table. We can also do some funky Boolean 
algebra…  
Recall the following distributive+law-of-1s+identity simplification? 
 
A+AB = A(1+B) = A(1) = A 
 
Well, we can run it backwards. That is, we can start with A and generate A+AB.  
We do that here with ~PI~P0: 
 
__ __   __ __      __ __   _    __ __   __ __ _   
P1 P0 = P1 P0(1) = P1 P0(1+I) = P1 P0 + P1 P0 I 
 
So that means our three terms for O1 are now four: 
     __ __   __ _      __ _ 
O1 = P1 P0 + P1 I + P1 P0 I            # from above 
     __ __   __ _      __ _   __ __ _ 
O1 = P1 P0 + P1 I + P1 P0 I + P1 P0 I  # distributive+law-of-1s+identity 
     __ __   __ _       __ __ _ 
O1 = P1 P0 + P1 I + (P1+P1)P0 I        # distribution 
     __ __   __ _          __ _ 
O1 = P1 P0 + P1 I + (  1  )P0 I        # complementarity 
     __ __   __ _   __ _ 
O1 = P1 P0 + P1 I + P0 I               # identity 
     __________________ 
O1 = (P1P0 + P1I + P0I)                # lots more Boolean algebra! 
 
…a NotMajority, or AntiMajority, or Minority circuit! 
 
We could also do this the standard plug-and-chug SoP (sum-of-products) way: 
     __ __ _   __ __     __    _      __ _ 
O1 = P1 P0 I + P1 P0 I + P1 P0 I + P1 P0 I  # sum-of-products 
     __ __ _   __ __     __ __ _   __    _   __ __ _      __ _ 
O1 = P1 P0 I + P1 P0 I + P1 P0 I + P1 P0 I + P1 P0 I + P1 P0 I  
                                            # rev idempotent, commutativity 
     __ __ _      __ _ __       __ _ __ 
O1 = P1 P0(I+I) + P1 I(P0+P0) + P0 I(P1+P1) # commutativity, rev distrib 
     __ __        __ _          __ _    
O1 = P1 P0( 1 ) + P1 I(  1  ) + P0 I(  1  ) # complementarity 
     __ __   __ _   __ _ 
O1 = P1 P0 + P1 I + P0 I                    # identity 
     __________________ 
O1 = (P1P0 + P1I + P0I)                     # lots more Boolean algebra! 
…a NotMajority, or AntiMajority, or Minority circuit! 



F4c) 
 
The feedback circuit is the standard synchronous digital systems model we’ve seen several times, 
where the output is passed through flip-flops and sent back to the input. 
 
The non-feedback circuit we haven’t seen before. However, from the problem description we know 
that Sx and Sy (i.e., P1 and P0) are really just time-delayed versions of the inputs. I.e., P0=I(t-1) 
and P1=I(t-2), we have the answer on the right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I O1 

O0 

With feedback 

N1 

O0 

O1 

N0 P0 

P1 

I I O1 

O0 

Without feedback 

N1 

O0 

O1 

N0 P0 

P1 

I 



F5:Potpourri 
 

a) One of 9. The lesson was [debug & test rigorously as if lives depend, expect the unexpected. 
Design with failure as a possibility. Add redundancy] 

1. Mariner I space probe 
2. Soviet gas pipeline 
3. Buffer overflow in Unix finger daemon 
4. Kerberos Random # generator 
5. AT&T network outage 
6. Intel Pentium floating pt 
7. Ping of death 
8. Ariane 5 Flight 501 
9. National Cancer Institute 
 

b) SPUR: Security, Privacy, Usability, Reliability 
 
c) What are the constraints on the timing?  

To maintain tsetup time constraints (and starting from the rising edge of a clock), we have the 
usual equation that helps us determine how fast we can run the clock. This is that the signal, 
from when it leaves the FF, goes through all the gates, until it comes around again, has to 
arrive on the inputs earlier than tsetup before the next clock rising edge. Thus, we have: 
tclk-to-q, + tinverter + tor + tsetup < tclock 
... and to maintain thold time constraints, which state that the signal cannot get back around 
and change before (less time) the hold time thold has passed, yields the following constraint: 
tclk-to-q, + tinverter + tor  > thold 
So, isolating for tinverter in both of these inequalities yields the constraints: 
thold – (tclk-to-q, + tor) < tinverter < tclock – (tclk-to-q, + tor + tsetup) 

 
d) How fast do branches for B need to be? Well, let’s figure out the equations: 

CPUtimeA = CPUtimeB [1] 
But we know the equation for CPUtime as: 

CPUtime = InstructionCount * CPI * ClockTime [2] 
So substituting that into [1] gives us 

InstructionCountA * CPIA * ClockTimeA = InstructionCountB * CPIB * ClockTimeB [3] 
But since it’s the same program,  

InstructionCountA = InstructionCountB [4] 
Equation [3] now simplifies to: 

CPIA * ClockTimeA = CPIB * ClockTimeB [5] 
And substituting 

ClockTimei = 1/ClockFreqi [6] 
into [5] gives 

CPIA / ClockFreqA = CPIB / ClockFreqB [7] 
So solving for CPIB: 

CPIB = ClockFreqB / ClockFreqA (CPIA) [8] 
CPIB = 4/2 CPIA= 2 * CPIA 

 



So now we only have to solve for CPIA and CPIB from the table: 
CPIA = 2(2/10) + 2(3/10) + 2(5/10) = (4+6+10)/10 = 20/10 = 2 cycles/instruction 
CPIB = 1(2/10) + 1(3/10) + X(5/10) = (2+3+5X)/10 = (5+5X)/10 = 4 cycles/instruction 

 
Solving for X yields 
5+5X=40  5X=35  X = 7 

 
e) lg(16 exbi) = lg(264) = 64 bits total. lg(1210x210) = lg(214) = 14 MSBs. lg(200,000,000) = 

lg(228) = 28 LSBs. Therefore we have 64-14-28=50-28=22 bits left, which can encode 4 
mebithings. 

 
f) How much could we store? Well, here is the standard equation: 

Capacity(B) = Density(B/in2) * Area/Surface (in2/Surf) * SurfacesPerPlatter (Surf/Plat) * 
#Platters (Plat) 

And we’re given 
Density = ? B/in2 
#Platters = 4 Plat 

SurfacesPerPlatter = 2 Surf/Plat (if we want to maximize capacity, we use BOTH sides!) 
Area/Surface = area of the disk = π r2

outer – π r2
inner = π (30/π – 22/π) = 8 in2/Surf 

Thus, ? Gibi (B/in2) * 8 (in2/Surf) * 2 (Surf/Plat) * 4 (Plat) = ? 232122 B = 240 B = 1 
TebiByte, so ? = 224 B/in2 = 16 GiB/in2 

 
g) 0: 32 TebiB, 1: 16 TebiB, 3: 31 TebiB, 5: 31 TebiB 

 


