
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Science

Fall 2004 Instructor: Dr. Dan Garcia 2004-10-18

CS61C Midterm

Last Name

First Name

Student ID Number

Login

The name of your TA (please circle)

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others in

CS61C who have not taken it yet. (please sign)

Instructions
This booklet contains 6 numbered pages including the cover page. Put all answers on this pages,
don’t hand in any stray pieces of paper.

Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your
backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the
“no fly zone” spare seat/desk between students.

Question 0 (1 point) involves filling in the front of this page and putting your name & login on
every front sheet of paper.

You have 180 minutes to complete this exam. The times listed by each problem will allow you to
finish with 60 (!) minutes left to check your answers. The exam is closed book, no computers,
PDAs or calculators. You may use one page (US Letter, front and back) of notes.

There may be partial credit for incomplete answers; write as much of the solution as you can. We
will deduct points if your solution is far more complicated than necessary. When we provide a
blank, please fit your answer within the space provided. You have 3 hours…relax.

Problem 0 1 2 3 4 5 6 7 8 Total

Minutes 30 5 5 10 20 10 20 20 120

Points 1 22 6 3 4 16 5 10 8 75

Score

Question 1: C and Circular Lists (22 points – 30 min.)
We’re writing a circular linked list to keep numbers. The idea is very similar to a single-linked list, but the

last element points to the first. Our circular linked list is made up of elements of type pair (a data type

from CS61A and project 1). Assume when the list is empty we initialize the global variable head to NULL.
Here’s an example on the left, with the pair definition on the right:

The pair structure is defined as follows:

struct pair {
 int car; // “number”
 struct pair *cdr; // next “pair”
} *head;

In the figure above, we can see 4 elements linked. When we insert an element, it goes after the first

element. E.g., if we represent the distinct elements list in the example above before insertion as {1 2 3
4} , then after a call to insert(5) it would be {1 5 2 3 4} .

a) Help us to write the insert function by adding only 3 statements.

void insert(int d) {
 /* create the new node */

tmp->car = d;

 /* Insert the new node in the right place */
 if (head == NULL) {
 /* The struct was empty… link the itself and we’r e done */
 tmp->cdr = tmp;
 head = tmp;
 } else {

/* There were already elements in the linked list.
 Link the new node after the first element. */

}
}

b) Instead we’d like you to link it after the “second” element. (If we only have 1 element, do the same as
before. Can it be done by only modifying the 2

nd
 and 3

rd
 statements? If so, do it below. If not, explain

why.
c)

/* Link the new node after the “second” element */

Or

1 2 3 4head

Question 1 (continued): C and Circular Lists (22 points – 30 min.)
d) Now, we want to be able to delete the full structure. Assume that the OS immediately fills any freed

space with garbage, so you cannot access freed heap contents. Finish the recursive

delete_recursively function. We want the tightest, cleanest code possible (measured by the

number of statements which terminate in semicolons). If you use only 2 semicolons, full credit. If you
use 3, you’ll lose 1 point. If you use more, you’ll lose 2 points.

void delete_full_structure()
{

if (head == NULL)
return;

delete_recursively(head);
}

You saw how inserting a fifth element numbered 5 into our list messed up our numbering. We’d like to

write reset_numbers that clobbers the node numbers to restore the nice 1, 2, 3,… numbering.

Note: A pointer to a struct stored in memory is just a pointer to memory we treat as broken up into the

fields.

void reset_numbers(pair* p, int i)
 {
 if (p != NULL) {
 p->car = i;
 reset_numbers(->cdr, i++);

}
}

e) Convert reset_numbers to MIPS keeping its structure recursive. I.e., don’t hand-optimize.

prologue

body

epilogue

f) In one sentence, what happens on an actual MIPS machine if we call reset_numbers(head, 1)
on the lists as described in this problem? (Assume our list is not empty).

Question 2: malloc masters (6 points – 5 min.)
Fill in the following C function that creates and returns the pointer diagram below. You can use only one

variable in your code, p. Don’t use more than 5 statements, including the two we show below. You may

modify line 1 (between int and p), but you’re not allowed to touch line 5. Please specify the function’s

return type.

Structure returned by malloc_masters()

int** malloc_masters () {

int ** p; /* 1
st

statement */

return p;

}

/* 5
th

 statement */

Question 3: Compiling, Assembling, Linking, Loading (3 points, 5 min.)
In at most one sentence each, describe 2 advantages and 1 disadvantage of dynamically-linked (vs
statically-linked) programs.

Advantage #1:

Advantage #2:

Disadvantage:

Question 4: Raw Bits (4 points, 10 min.)

0x02556321

four charactersInterpret the
word on the

right as… an instruction

4

P

Question 5: MIPS Reverse Engineering (16 points – 20 min.)
a) Translate the following MIPS function into the C in the boxes on the right. Fill in the arguments (&

their data types) and return types for foo & bar .

Main: …
Set up $a0
jal foo
…

foo: li $a1, 0
bar: addi $sp, $sp, -4

sw $ra, 0($sp)
bnez $a0, else
mv $v0, $a1
j end

else: srl $a0, $a0, 1
 addi $a1, $a1, 1
 jal bar
end: lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra

If you can tighten the body of bar to be just “return ___; ” (it’s

possible) you’ll receive full credit. Otherwise you’ll lose one point.

b) What math function does foo compute?

c) What’s the biggest number that foo will ever return?

d) What does foo((unsigned int) –x) return if x is a single-digit integer [1,9]?

Question 6: Binary Encoding (5 points, 10 min.)
a) How many different instructions can we specify in MIPS given our standard

32-bit encoding? Assume we only have R-, I- & J-format instructions.

b) (This question has nothing to do with MIPS) Assume we have enough bits
to byte-address 1610 exbibytes. We want to define some number of the most-
significant bits to encode 1210 x 2

10
 things, and some number of the least-

significant bits to encode 200,00010 things. How many things can we encode
with the remaining bits? Use IEC language, like “16 kibithings,” or “128
mebithings.” Show your work below.

Question 7: Numerical Representation (10 points – 20 min.)
Considering 8-bit integers, answer the following questions for each column. The bits are numbered as: 7
6 5 4 3 2 1 0 . Each box might be a different integer. You must show scratch work to receive credit.

Given that bits 3-0 are 1111 Given that bits 7-4 are 1001

If the # were interpreted as a
two’s complement signed

integer, would it be negative
(-), positive (+) or impossible

to tell?
(circle one)

- CAN'T-TELL + - CAN’T-TELL +

Scratch space Scratch space

Decimal Value Hexadecimal Value Decimal Value Hexadecimal Value

Sign-
magnitude

Scratch space Scratch space

Decimal Value Hexadecimal Value Decimal Value Hexadecimal Value

Unsigned

Scratch space Scratch space

Decimal Value Hexadecimal Value Decimal Value Hexadecimal Value

Two’s
complement

signed

Scratch space Scratch space

Decimal Value Hexadecimal Value Decimal Value Hexadecimal Value

If the # were
interpreted

as a [each of
the values

on the right],
what is the

most
negative

(closest to -
) value

possible?

(for each
answer,

show your
work and
write the

decimal and
hexadecimal

value
immediately

below)

One’s
complement

Question 8: Floating Point Debate (8 points – 20 min.)
Bush and Kerry are debating about which is better for representing integers with 32 bits, a float or an

int ; you’re going to provide them with data to support their argument. We define two acronyms here:

NICTO = “Negative Integer Closest To 0” and PICTO = “Positive Integer Closest To 0.”

a) What are the NICTO and PICTO that float can represent but int cannot.
Show all work and the 32-bit hex number that corresponds to both.

Show all of your work NICTO PICTO

Decimal Value

(you may leave as an expression)

32-bit Hexadecimal Value

b) What are the NICTO and PICTO that int can represent but float cannot. Show all work.

Show all of your work NICTO PICTO

Decimal Value

(you may leave as an expression)

