
CS 61C  Fall 2003  Midterm 2 solutions 
 
1.  Who's responsible for $1? 
 
The assembler.  $1 ($at) is reserved for use by MIPS pseudo-instructions that 
are translated *by the assembler* into multiple MIPS machine language 
instructions.  Most registers are allocated by the compiler to hold temporary 
or long-term values, but a few have special purposes, and $1 is one of those. 
 
One point, all or nothing. 
 
 
2.  Which is *not* a job of the linker? 
 
COMPUTE BRANCH OFFSETS.  The assembler does this.  The relocation process 
doesn't change the offset, because both the branch instruction itself and the 
instruction to which it branches are moved, so the distance between them 
doesn't change. 
 
[RELOCATION is the linker's main job: Each .o file thinks it starts at address 
zero, and the linker moves each one to its own actual starting address (code 
and data separately, etc.).] 
 
[COMBINE .O FILES is the reason relocation is necessary; that's what the 
"link" in "linker" means -- to combine things.] 
 
[RESOLVE EXTERNAL SYMBOLS is also part of the combining process, so that the 
.o files can refer to each other.] 
 
Scoring: Two points, all or nothing. 
 
 
3.  Which disk for which purpose? 
 
The seek time is the amount of time needed before a read or write operation 
can begin.  A small seek time is good.  Disk A has the smaller seek time. 
 
The transfer rate is the speed with which data can be read or written once the 
operation begins.  A large transfer rate is good (it's the speed, not the time 
required).  Disk B has the larger transfer rate. 
 
For small files, the startup time is most important, because we'll do many 
small operations.  So disk A is the better choice. 
 
For large, contiguous files (it's important that they're contiguous because 
then the entire file can be handled in a single transfer), the transfer rate 



is most important, because there will be fewer operations, but each operation 
will take longer.  So disk B is better. 
 
Scoring: one point each, all or nothing. 
 
 
 
4.  Network protocol stack 
 
The bottom of the stack is low in abstraction level, dealing directly with 
hardware; the top is highest in abstraction, working in terms of a single 
(virtual) network with reliable worldwide connections: 
 
Application level:  Mail, FTP, Instant Message, **HTTP** (Web browser), etc. 
 
Transport level:  Adds reliability to worldwide Internet:  TCP and UDP 
(TCP provides ongoing streams of in-order bits; UDP provides single packets.) 
 
Network level:  Adds worldwide connection through multiple physical nets: 
IP (Internet Protocol) 
 
Link level:  Device drivers for local network hardware: **Ethernet**, 
Token Ring, Wireless, etc. 
 
So TCP=Transport, HTTP=Application, IP=Network, Ethernet=Link, UDP=Transport. 
 
Scoring, 2 points, minus 1/2 point per error, but no less than zero points. 
 
 
 
5.  How long for round trip? 
 
125 bytes = 125*8 bits = 1000 bits.  If the bandwidth is 1,000,000 bits per 
second, it takes 1/1000 second (1 millisecond) to send a packet. 
 
The time for the round trip is 
 2 ms outbound latency 
 1 ms outbound packet 
 1 ms to prepare the ACK 
 2 ms inbound latency 
 1 ms inbound packet 
which adds up to a total of 7 milliseconds. 
 
Scoring: 2 points, all or nothing.  Since the question said "how long, in 
milliseconds" we accepted 7 without units specified, but we also accepted the 
same time expressed in other units, e.g., 7000 microseconds. 



 
 
 
6.  Why can't interrupt handler use $sp from user? 
 
THE INTERRUPT HANDLER MIGHT OVERFLOW THE APPLICATION'S STACK SPACE.  
That is, 
the user's $sp might point right near the bottom of a page, and if the kernel 
allocates stack space by decreasing $sp, its new value might point to an 
invalid page.  If the user program does that, the result will be a TLB miss 
(page fault) exception, and the kernel will figure out that the user program 
needs more stack space and will allocate another page.  But if a page fault 
happens in the exception handler, especially at the beginning of the handler 
(where we're likely to be allocating stack space) before registers have been 
saved, various bad things will result, such as losing track of the original 
EPC, or an infinite loop of page faults from the page fault handler. 
 
(More generally, the kernel can't assume anything about the user's use of 
registers.  For all we know, $sp might not point to a stack at all, either 
because of a user program bug or because of a deliberate attempt to crash the 
kernel.) 
 
[Interrupt in kernel but stack in user memory:  This would be okay, if we were 
sure that $sp really does point to some usable user memory.  The user program 
can't access kernel memory, but the kernel *can* access user memory!] 
 
[Interrupt might occur while $sp is being updated:  Updating the stack 
pointer is a single machine instruction: 
 addiu $sp, $sp, -framesize 
and interrupts don't happen in the middle of an instruction!] 
 
[Interrupt handlers don't need a stack:  This might be true, but isn't likely; 
OS kernels are generally written in C, except for the code at the very 
beginning of the exception handler that sets up registers, and this C code is 
compiled by the regular old C compiler, using the regular old register 
conventions -- args in $4-$7, temps in $8-$15, etc.] 
 
Scoring: 2 points, all or nothing. 
 
 
 
7.  Find the bugs. 
 
Alas, we were wrong; there were 5 or 6 bugs, depending how you count.  The 
ones we had in mind were: 
 



Bug 1.  After reading the status register with 
 
 lw $t1, 0($t0) 
 
we want to check the Ready bit, but we also have the IE bit in this register, 
and most likely that bit is on, or we wouldn't be interrupting!  So before the 
BEQ test, we must mask off all but the Ready bit: 
 
 andi $t1, $t1, 1 
 
 
Bug 2.  Suppose the input buffer is full, and therefore we dismiss the 
interrupt without reading the character from the receiver data register.  What 
will happen?  The receiver is still ready!  So it immediately interrupts 
again, and we never get any work done -- in particular, we'll never get a 
chance to empty out that buffer.  So we have to read the character, even 
though we can't store it into the buffer.  The fix is to move the instruction 
 
 lw $t4, 4($t0) 
 
from the beginning of the fourth "paragraph" of code a little earlier, 
somewhere in the third "paragraph", before the BEQ that ends it. 
 
 
Bug 3.  In the third and fifth paragraphs, the instruction 
 
 addiu $t2, $t2, 1 
 
that increments the rec_nextIn pointer doesn't take into account the 
possibility of wraparound -- if we are at the end of the buffer, we have to go 
back to the beginning.  So in both cases we should add the instruction 
 
 andi $t2, $t2, 7 
 
which turns the value 8 into 0.  (We meant these two as one bug, but some of 
you counted each instance as a separate bug.) 
 
 
You found two more we hadn't thought of: 
 
Bug 4:  We forgot to save and restore $at, which is used by several assembler 
pseudo-instructions.  We should have said 
 
 .set noat 
 sw $at, 24($sp) 
 .set at 



 
and changed the -24 to -28 in the prologue, and the obvious corresponding 
changes in the epilogue. 
 
 
Bug 5:  The instruction 
 
 sb $t4, rec_buffer($t2) 
 
combines a 32-bit address with an index register, but you can't fit that into 
a MIPS instruction.  We should have said 
 
 la $t1, rec_buffer 
 add $t1, $t1, $t2 
 sb $t4, 0($t2) 
 
... but in the grading we had some disagreement as to whether or not the 
MIPS assembler would accept what we wrote and turn it into these machine 
instructions, so we're not sure this is really a bug. 
 
 
Scoring:  2 points per correctly reported bug, counting bug 3 as two bugs 
if you counted it that way, up to a maximum of 6 points. 
 
But there were some NON-bugs that we did not accept: 
 
Non-bug: "You should branch to intrp instead of xmt_intrp."  This would in 
fact *add* a bug, a really bad one!  Interrupt handlers can't loop, or the 
user processes -- the things the user really wants to do -- will never get a 
chance to run!  Interrupt handlers just dismiss the interrupt if there is no 
work to do. 
 
Non-bug: "The LUI leaves garbage in the right half of $t0."  This myth keeps 
popping up.  LUI sets the right half of the target register to zero.  If it 
put garbage in the right half, how do you think an ORI instruction would fix 
that?  We would just be ORing the value we want with that garbage, producing 
different garbage. 
 
Non-bug: "Turn the LW for the data register into LB" or its mirror image 
non-bug, "Turn the SB for the rec_buffer into SW."  The load has to be LW 
because I/O device registers are always read and written as full words; the 
store has to be SB because the buffer is a buffer of characters (bytes), not a 
buffer of integers (words).  The LW will read a word, but only the low-order 
(rightmost) byte of that word is meaningful. 
 
Non-bug: "You could eliminate an unnecessary instruction by ..."  Even if this 



were true, it wouldn't be a bug. 
 
Non-bug: "You can't use the user's $sp."  This is well-motivated, in light of 
the previous question.  But we explicitly said in the project that one of the 
simplifications we were making (compared with a real operating system) is that 
the entire project runs in kernel mode, and the stack in particular can be 
trusted. 
 
Some people gave correct English descriptions along with incorrect code to fix 
the bug.  (The most common one was to say 
 
 andi $t2, $t2, 31 
 
with 31 instead of 7.)  We didn't penalize these answers, since we would have 
accepted the English alone. 
 
 
 
8.  Cache hit rate to improve performance. 
 
Many people didn't understand what we meant by "improve average performance." 
All we meant by "average" is that the cache hit rate itself is an average; you 
can always come up with peculiar programs that violate locality of reference 
and therefore don't take advantage of the cache.  Some people thought 
"average" meant that they should average the hit time and the miss time, and 
therefore ended up with a cache hit rate of 50%.  If you think about it, that 
50% comes from your averaging, not from anything about the particular cache 
data! 
 
What we wanted you to do was to compare the performance of the system with 
this cache against the performance of a system with the same memory but no 
cache.  In the no-cache system, every memory reference takes 200 ns. 
 
With the cache, we have 
 
 hit cost: 30 ns 
 miss penalty: 200 ns 
 miss *cost*: 30+200 = 230 ns 
 
("If the desired address is not found in the cache, *then* main memory is 
accessed"!  The two don't happen in parallel, in other words.) 
 
So if the hit rate is R, then 
 
 (R * 30) + ((1-R) * 230) = 200 
 



for break-even performance. 
 
 30 R + 230 - 230 R = 200 
 30 R + 230 = 230 R + 200 
 230 = 200 R + 200 
 30 = 200 R 
 R = 30/200 = 3/20 = 15/100 = 0.15 = 15% 
 
Scoring: 2 points, all or nothing. 
 
 
 
9.  Cache geometry. 
 
The cache holds 64 Kb of data.  Each cache slot contains 32 words, or 
32*4 = 128 bytes.  So there are 
 64K/128 = 1K/2 = 512 = 2^9 
cache slots.  (Alternatively, 64K/128 = 2^16 / 2^7 = 2^9.) 
 
Each cache slot has 128 = 2^7 bytes.  So the offset field, which is used to 
find a byte or word within the slot, must be 7 bits, regardless of anything 
else about the cache geometry. 
 
(P&H subdivide the offset into the byte offset within a word, which is always 
the rightmost two bits, and the word offset within a cache slot, which is 7-2 
= 5 bits.  This makes sense to a hardware designer because the bus is a word 
wide, so the processor always makes memory requests for a word, because that's 
all the bus will give you.  The LB and SB instructions extract a single byte 
from the word internally, so the word offset and the byte offset are used by 
different parts of the hardware.  Still, they're both selecting data from 
within a cache slot, so they're both part of the overall offset.) 
 
(a) If the cache is direct mapped, a "set" is a single cache slot, so there 
are 2^9 sets, and so the index is 9 bits.  This leaves 32-9-7 = 16 bits for 
the tag. 
 
(b) If the cache is 4-way set associative, then there are 512/4 = 2^9/2^2 = 
2^7 sets, so the index is 7 bits, and the tag is 32-7-7 = 18 bits. 
 
(Yeah, we forgot to say that an address is 32 bits, but generally you made 
that assumption, which was what we intended.) 
 
 
Scoring: One point, all or nothing, for 16,9,7 in part (a); one point, all or 
nothing, for 18,7,7 in part (b). 
 



Exception:  We gave one point for the six numbers (a)18,9,5;(b)20,7,5. 
(Exactly those six numbers, one total point.)  We also gave one point for the 
six numbers (a)16,9,5;(b)18,7,5.  These solutions came from leaving out the 
two "byte offset" bits from the offset, under two slightly different 
interpretations.  The second set of six is actually better, because it's more 
consistent, thinking in terms of 30-bit word addresses. 
 
 
 
10. Effects of cache associativity. 
 
(a) More associativity means fewer conflict misses -- we avoid the situation 
in which there are empty slots, but we can't use any of the empty slots for a 
particular request because only a particular set (or, for direct mapped, a 
particular slot) is eligible.  So the hit rate will INCREASE, which is good. 
 
(b) More associativity means we have to be able to get the value we want from 
any slot in a set (for fully associative, from any slot at all).  This 
requires more complicated circuitry to route the value to or from the right 
slot, so the hit cost will INCREASE, which is bad. 
 
For part (b), several people argued that the hit cost will not change, because 
we ask all the slots in parallel, not one after another.  That's true; the hit 
cost isn't multiplied by the number of slots.  The added hit cost is more 
modest; it is caused by a deeper selection circuitry, with more gate delays to 
get at a particular slot.  Often the complexity of the addressing hardware is 
proportional to the log (base 2) of the number of slots. 
 
Scoring: one point each, all or nothing. 
 
 
 
11.  VM address calculation. 
 
The page size is 16K = 2^14 bytes.  Therefore, the 32-bit address consists of 
14 bits of offset on the right, and 32-14 = 18 bits of page number on the 
left. 
 
Since 14 and 18 aren't multiples of four, these fields are not whole 
hexadecimal digits; I found it easiest to convert the given virtual address to 
binary: 
 
 0000 0000 0010 0001 0010 0100 1111 1000 
                      /\ 
         page number /  \ offset 
 



Regrouping the page number into groups of four bits, from right to left, we 
get 
 
 00 0000 0000 1000 0100 
 
which is 0x00084.  That's in row 1 (the second row) of the TLB, where we find 
the corresponding physical page number: 0x050a, which is 
 
 00 0000 0101 0000 1010 
 
which we regroup into 
 
 0000 0001 0100 0010 10 
 
Combining that with the original offset we have 
 
 0000 0001 0100 0010 1010 0100 1111 1000 
                      /\ 
         page number /  \ offset 
 
which gives 0x0142a4f8. 
 
Most problems came from trying to make the offset or the page number fit into 
the overall address as hex digits. 
 
Scoring: Two points, all or nothing. 
 
 
 
12.  Comparing physical and virtual sizes. 
 
These aren't silly questions; virtual address space isn't exactly a size of 
any physical thing, but it is the size of memory-as-seen-by-applications, and 
it's reasonable to think that that should bear some relationship to the actual 
size of memory. 
 
The computer on your desk (or your lap) probably has 4Gb of virtual address 
space, but it probably doesn't have nearly that much physical memory; a 
typical size might be 256Mb, which is 1/16th of the address space.  Why can a 
program address more "memory" than actually exists?  Of course the answer is 
locality of reference; only the program's WORKING SET -- the addresses that it 
has used recently -- has to be in physical memory to allow the program to run. 
So this is answer A. 
 
The opposite situation is uncommon these days, but was quite common when 
16-bit-wide computers (such as the original IBM PC and the DEC PDP-11) were 



used as the first desktop machines.  (In those days, serious computing was 
done on 32-bit or 36-bit computers that filled entire rooms.)  When I (BH) was 
a high school teacher, we had a PDP-11 running Unix, with, if I remember 
correctly, half a megabyte of main memory.  But a PDP-11 program could only 
address 64Kb (2^16) of memory!  Why didn't the rest of the physical memory go 
to waste?  Because we had 40 terminals connected to this machine, with 40 
students MULTITASKING (answer C).  Several people's programs were all in 
physical memory at once, so the operating system could often switch from one 
to another without waiting for disk operations. 
 
The only common wrong answer was to get them backwards (C and A respectively); 
most of you understood that TLB (caching the page table) and LRU (a particular 
replacement policy) are irrelevant to this question. 
 
Scoring: One point each, all or nothing. 
 
 
 
13.  What are the page table flag bits for? 
 
The Valid bit is used to indicate that a particular virtual page is actually 
present in physical memory right now, because it's part of the program's 
WORKING SET of recently used pages.  (A) 
 
The Writeable bit is used to indicate that the user program is allowed to 
write into the page, because it's data unique to this process, rather than 
SHARED CODE which can't be written because that would affect other processes 
running the same program.  (F) 
 
The Referenced bit is used to indicate that this page has been used within the 
past clock tick (because the OS clears all the Referenced bits once per tick); 
this is important to help the OS remember when each page was last used, so 
that we can implement a LEAST-RECENTLY-USED REPLACEMENT policy.  (D) 
 
The Dirty bit is used to keep track of whether any changes have been made to 
the data in memory since the page was loaded into memory, so that when we have 
to remove the page to make room for another needed virtual page, we know 
whether or not we need to WRITE BACK the modified data to the disk. (C) 
 
Answer G (heap allocation) is sort-of relevant to the Valid bit, because 
the working set has to do with allocated memory, but there's nothing special 
about the heap; code pages and stack pages can be Valid or not Valid, too. 
 
Answer H (set associativity) is sort-of relevant to the Referenced bit, 
because without associativity there's no need for any replacement policy; 
a direct mapped cache has only one candidate slot for a given job.  But 



*set* associativity is for caches, not VM, in which pages of physical 
memory are always fully associative. 
 
Answers B and E aren't even close.  Virtual memory never uses write-through, 
and if it did, pages would *never* be dirty.  And if we used random page 
replacement, we wouldn't care which pages have been referenced recently. 
 
Scoring: 1/2 point each, all or nothing. 


