READ AND SIGN THIS:

I certify that my answers to this exam are all my own work, and that I have not discussed the exam questions or answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not discuss the exam questions or answers with anyone until after the scheduled exam time.

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1–3</td>
<td>5</td>
</tr>
<tr>
<td>4–6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>8–10</td>
<td>6</td>
</tr>
<tr>
<td>11–13</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>
Question 1 (1 point):

Which part of the translation process is responsible for register $\$1$ ($\$at$)? (Choose one answer.)

_____ Loader
_____ Linker
_____ Assembler
_____ Compiler

Question 2 (2 points):

Which of the following is not a job of the linker? (Choose one answer.)

_____ relocation
_____ compute branch offsets
_____ combine .o files
_____ resolve external symbols

Question 3 (2 points):

You have a choice between two disks which are identical except for seek time and transfer rate:

A. 5 ms avg. seek time, 50 MB/s transfer rate
B. 10 ms avg. seek time, 100 MB/s transfer rate

Which would you choose based upon the following access patterns? (Choose either A or B for each pattern.)

Small 1K files: _____
Large (1MB) files stored in contiguous blocks on disk: _____
Question 4 (2 points):

For each of the following protocols, indicate its level in the protocol stack by writing one of the words Link, Network, Transport, or Application:

TCP __________

HTTP __________

IP __________

Ethernet __________

UDP __________

Question 5 (2 points):

Imagine that two networked computers, A and B, have a one-way network latency of 2ms and a network bandwidth of 1 Mbit/sec (10^6 bits/sec). How long, in milliseconds, does it take between the time A starts sending a 125 byte (total, including headers, etc.) data packet to B, and the time A receives the entire acknowledgement (ACK) packet? Assume ACKs are the same size as the data packet, and it takes a computer 1ms to generate an ACK in response to receiving an entire incoming packet.

Question 6 (2 points):

Why can't interrupt handlers use the stack pointer they find in \texttt{sp}? Choose the best answer.

______ The interrupt handler is in kernel memory while the stack resides in user memory.

______ An interrupt might occur while the stack pointer is being updated.

______ The interrupt handler might overflow the application’s stack space.

______ Interrupt handlers have no need for a stack.
Question 7 (6 points):

While working on project 4 (the interrupt project), your friend asks you to help debug the receiver interrupt portion of his/her code. Explain what is wrong, either by changing the code or by writing a single English sentence and showing where the problem is in the existing code, for each bug. The bugs do not involve enabling and disabling of interrupts, saving and restoring the EPC, or any part of the kdata section. There are three bugs.

```
.ktext 0x80000080

intrp:  mfc0  $k0, $14
       addiu $sp, $sp, -24
       sw   $t0, 0($sp)
       sw   $t1, 4($sp)
       sw   $t2, 8($sp)
       sw   $t3, 12($sp)
       sw   $t4, 16($sp)
       sw   $k0, 20($sp)

       lui $t0, 0xffff      # Everything above this line is correct
       lw  $t1, 0($t0)
       beq  $t1, $0, xmt_intrp  # Check if the receiver is ready

       lw  $t2, rec_nextIn
       lw  $t3, rec_nextOut
       addiu $t2, $t2, 1     # Check if the input
       beq  $t2, $t3, xmt_intrp  # buffer is full

       lw  $t4, 4($t0)       # Load from the rcv data register
       lw  $t2, rec_nextIn
       sb  $t4, rec_buffer($t2)  # Store into the input buffer

       addiu $t2, $t2, 1
       sw   $t2, rec_nextIn   # Update nextIn pointer

xmt_intrp:  ...      # Everything below this line is correct

       lw  $k0, 20($sp)
       lw  $t4, 16($sp)
       lw  $t3, 12($sp)
       lw  $t2, 8($sp)
       lw  $t1, 4($sp)
       lw  $t0, 0($sp)
       addiu $sp, $sp, 24
       rfe
       jr   $k0

.kdata

rec_buffer: .space 8

rec_nextIn: .word 0
rec_nextOut: .word 0
```


Question 8 (2 points):

A cache access takes 30ns and a memory access takes 200ns. The cache is accessed first; if the desired address is not found in the cache, then main memory is accessed. What’s the minimal cache hit rate necessary for the cache to improve average performance?

Question 9 (2 points):

Calculate the sizes (number of bits) of the fields for the given caches.

(a) The cache’s total data capacity is 64 Kbytes, the block size is 32 words, and the cache is direct mapped.

 tag __________
 index __________
 offset __________

(b) The same cache as in (a), but 4-way set associative.

 tag __________
 index __________
 offset __________

Question 10 (2 points):

(a) As you go from direct mapped to fully associative, your hit rate will usually (pick one):

 _____decrease _____increase _____not change

(b) As you go from direct mapped to fully associative, your hit cost (time required) will (pick one):

 _____decrease _____increase _____not change
Question 11 (2 points):

A machine has 32 bit virtual and physical addresses. The page size is 16K bytes. Here is the TLB:

<table>
<thead>
<tr>
<th>Virtual Page Number</th>
<th>Physical Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0x0030</td>
</tr>
<tr>
<td>1</td>
<td>0x050a</td>
</tr>
<tr>
<td>2</td>
<td>0x1000</td>
</tr>
<tr>
<td>3</td>
<td>0x5683</td>
</tr>
</tbody>
</table>

What physical address corresponds to the virtual address 0x002124f8?

Question 12 (2 points):

Here are four concepts relating to virtual memory:
A. working set C. multitasking
B. TLB D. LRU replacement

It can be sensible for a computer’s virtual address space to be bigger than its maximum possible physical memory size because of (choose one of A–D) ___________.

It can be sensible for a computer’s virtual address space to be smaller than its maximum possible physical memory size because of (choose one of A–D) ___________.

Question 13 (2 points):

Here are eight concepts relating to virtual memory:
A. working set E. random replacement
B. write-through F. shared code
C. write-back G. heap allocation
D. LRU replacement H. set associativity

For each of the four page table entry flag bits, indicate which concept is most relevant (choose one of A–H):

Valid __________
Referenced __________
Writeable __________
Dirty __________