CS 61C Fal | 2003 M dterm 1 sol utions

Most of the short-answer questions were worth 1 point or 1/2 point, with no
possibility of partial credit. Scoring information is given below only for
the problems where it's not obvious fromthe above. W carried half points to
the front of the exam but after adding the points we truncated the result to
an integer.

la. Negation

23 = 16+7 = 16+4+2+1 = 00010111 in 8-bit binary.

The sign-nagnitude representation of -23 just turns on the leftnost bit, so
00010111 -> 10010111

The ones-conpl ement representation reverses all the bits, so 00010111 ->
11101000.

The twos-conpl ement representation is the ones-conpl enent representation plus
1, so 00010111 -> 11101001

So the answers in order are B, C, A D

1b. twos conpl ement range

Wth N bits you can represent 2”N val ues, but when you are representing signed
i ntegers about half those values are negative, so the |argest nagnitude is
around 2*(N-1). For N=8, 2"N=256 and 2"(N-1)=128, so the answer has to be
close to -128

More precisely, in Nbit twos conplenent, the nost negative nunber is
-(2"(N-1)), which is represented as 100...00. (The nost positive nunber is
(2°(N-1))-1, which is 011...11.

For eight bits, the range is from-(2"7) to (27"7)-1, or -128 to 127. So the
exact answer is indeed -128.
lc. unsigned range

In N-bit unsigned representation, the snmallest nunber is 0, and the | argest
nunber is (2"N)-1, represented as 111...11.

For eight bits, the range is 0 to 255, so the answer is 255

1d. hex addition

OxFA25 + 0xB705. The easiest way to do this is the same way you' d do addition
of decimal integers: add fromright to left, carrying when the result is 16 or
nor e.

5+5 10 decimal = A hex, no carry.

0+2 = 2, no carry.

A+7 = 10 decimal + 7 = 17 = 16+1 = 1, carry 1.

F+B+1 = 15 + 11 + 1 decimal = 27 16+11 = B, carry 1.

So the result is Ox1B12A. But we only have 16 bits, which is 4 hex digits, so
the leftnost digit is lost and the result is OxB12A.

If you didn't know the addition table for hex, another way to solve this
problemis to convert to binary and add the binary val ues:

carry 1 1111 11 11
first nunber 1111 1010 0010 0101
second nunber 1011 0111 0000 0101

1 1011 0001 0010 1010
Dropping the leftnmost bit and converting back to hex gives OxB12A.
If we'd all owed cal cul ators, you could have converted the nunbers to deci nal
and added them Since they're signed nunbers and both have the | eftnost bit

on, both are negative, so we should take their twos conplenents to get their
absol ut e val ue.

We get the ones conplement by subtracting each hex digit from 15 decimal, then
we add 1 (to the entire nunber, not to each digit) to get the twos conpl enent:

G ven nunber Ones conpl enent Twos conpl enent

FA25 05DA 05DB
B705 48FA 48FB

5*1672 + 13*16 + 11 = 1499
4*1673 + 8*16"2 + 15*16 + 11 = 18683

So our problemis (-1499)+(-18683) = -20182 = -4ED6 hex

Ox4ED6' s ones conpl enment is 0xB129; its twos conpl enent is O0xB12A.

le. Overfl ow?

No, there is no overflow. In *unsigned* addition, a carry out fromthe

| eftnost bit is always an overflow, but in *twos conplenent* addition,
overfl ow occurs when the carry out fromthe leftnost bit is unequal to the
carry into the leftnost bit. 1In this case, both carries are 1. Another way
to see this is that the range of representable nunbers in 16-bit twos
conplenent is -27215 to (2715)-1, or -32768 to 32767. So -20182, which is the
correct answer, is representable, so there will be no overfl ow.

2al. static char str[] = "thing";

This all ocates a six-byte character array (including a byte for the null at
the end) in global data space. Every call to set() refers to this same array.
So each of the three calls changes one character: thing -> thong -> whong ->
wong. So the result that's printed is "wong".

2a2. char str[] = "thing";

This all ocates a new six-byte array on the stack for each call, then returns
the address of that stack array, but the stack frane containing it is
deal | ocated when set() returns. So what will be printed is whatever the cal
to printf() puts at that address on the stack! The result is therefore
undefined, or a runtime error

2a3. char *str = malloc(6); strcpy(str, "thing");

Thi s heap-all ocates a new six-byte array for each call. Each array has the
initial value "thing" and then one character is changed. So the first two
calls have essentially no effect; the third call changes thing -> tring, and
"tring" is printed.

2b. What's legal C?

char a[14]; char c; char *pl; char **p2

pl = a+b; The "a" without a subscript nmeans &a[0], a constant of type
poi nter-to-char. Adding an integer to a pointer is legal, and
returns a pointer-to-char, which matches the type of pl, so
the assignment is LEGAL.

&1l = &a[0]; Any expression starting with & is a constant, not a variabl e,
so this is an attenpt to assign a value to a constant, like
saying 3 = 4; so it's |LLEGAL.

p2 = a; Again, "a" neans &a[0], a constant of type pointer-to-char.

But p2 is of type pointer-to-pointer-to-char, so this is a
type mismatch and is ILLEGAL. It would be I egal, although
weird, with an explicit cast:

p2 = (char **)a;

*(a+1l0) = 't'; The "a+10" is a valid expression of type pointer-to-char, |ike
atb in the first statenent. So *(a+1l0) is a variable of type
char, and we are assigning a char value to it, so this is
LEGAL.

*p2 = &c; p2 is of type pointer-to-pointer-to-char, so *p2 is a variable
of type pointer-to-char. &c is a constant of type
poi nter-to-char. These match, so this assignment is LEGAL.

[Scoring: You started with 2 points, and lost 1/2 point for each error -- each

statenent that either should be crossed out but isn't, or shouldn't be but
is -- with a floor of zero points.]

2c. Wy stack frames?
Many people wongly said "both" to this question

The advant age of the stack over the heap is that allocation and deal |l ocation
are just a single instruction each:

addi $sp, $sp, -framesize # allocate

addi $sp, $sp, franesize # deal | ocate
By contrast, heap allocation requires searching the free list to find a large
enough free block, renoving that block (or part of it) fromthe free list, and
updati ng the bl ock header

Access to local variables requires that we keep a pointer to the frane in a
regi ster, but once we've allocated the space, it doesn't natter whether that
pointer points into the stack or into the heap; in either case we can use it
in load and store instructions.

So the answer is #l1.

3a. Branch MAL->machi ne | anguage

During the exam several people asked "what is the address of LOOP?" But
branch instructions don't contain the target address; they contain the of fset
fromthe current PC (which points just after the branch) to the target
address. In this case, you don't need to know where LOOP is; you can see
that LOOP is the instruction before the branch, and that's all you need.

Per haps the reason for the confusion is that the *assenbly | anguage* branch
instruction gives the target address (in the formof a |abel), while the
machi ne | anguage instruction gives the offset. The assenbl er conputes the

of fset and uses it in the nachine instruction that it generates.
BNE has opcode 5, which is 000101 in six bhits.

$t0 = $8 = 01000 in five bits.

$zero = $0 = 00000.

LOOP is the instruction before the branch. The offset would be zero to branch
to the instruction after the branch, -1 to branch to the branch instruction
itself, and -2 to branch to the previous instruction. -2 is 1111111111111110
as 16 hits.

000101 01000 00000 111117112112112112110
Regrouping in four-bit chunks gives

0001 0101 0000 0000 11117 121121 11211 1110
which is 0x1500fffe.

A popul ar wrong answer was 0x1500fff8, which would be correct if branch
of fsets were neasured in bytes, like |load/store offsets, rather than in words
as they actually are.

3b. Wiy stack pointer in register?

Note that this is not the same as question 2c, which was about stack vs. heap
al | ocati on.

The main reason to keep pointers in registers is that all MPS nenory
references use I-format (register+offset) addressing. So in order to get to
things on the stack, we need a register that contains an address near the
thing we want. The nost straightforward way to do this is to keep the address
of the current stack frane in a register. This is answer 2.

Answer 1 is wong because (unlike some other architectures) there is nothing
specifically about stacks in the MPS architecture. (Qher architectures, for
exanmpl e, have instructions named PUSH t hat all ocate one stack word and add an
itemat the new stack address, and POP for the reverse.)

Answer 3 i s nonsense; stack frames point to variables, not to procedures
(unless a local variable happens to be of type pointer-to-procedure). And 4
is clearly wong.

3c. MAL pseudo-instruction to real MPS

The reason why the given ADDI instruction is not an actual machine instruction
is that its operand doesn't fit in 16 bits. So we have to get it into a
register, namely $at, the one reserved for use by the assenbler.

| ui $at, Ox7f
ori $at, SPat, Oxf333
add $s0, $s1, $at

It is incorrect to use ADDI or ADDIU instead of ORI in the second instruction.
These instructions both sign-extend their inmedi ate operand, so you woul d be
addi ng Oxfffff333, not 0x0000f333, to the result of the LU . The sum would

be Ox7ef333, not 0x7ff333. Since this is the nain point of the question, this
error got no credit.

We gave 1/2 point credit for a translation that used a register other than

$at (or the equivalent $1) to hold the tenporary result. The assenbler is

not allowed to use other registers, such as $t0, for this purpose, because

your program m ght need the value in $t0. (But it's okay, in this case, to use
$s0 instead of $at, since $s0 is the register whose value we're trying to change
here. W gave full credit for $s0.)

3d. Structs and unions.

The key point to notice here is that fields i and d share nenory. Each of the
unions (x and y) are therefore 8 bytes long (the larger of sizeof(int) and
si zeof (doubl e)). sizeof(struct point) is therefore 16

la $8, p # $8 points to p[O0]

addi $9, $8, 160 # $9 points to p[10] ($8 + 10*16)
L1: bge $8, $9, L2

sw $0, 0(9%$8) # store 0 ($0) into x.i (offset 0)

sw $0, 8(%$8) # store 0 into y.i (offset 8)

addi $8, $8, 16 # add sizeof (struct point) to pointer

b L1
L2:
Note: G ven that x and y are unions of different-sized alternatives,
it's not obvious whether &.i is the sane as &.d or whether it cones
4 bytes later. But the code we gave you settles that question, because
we used an offset of O for x.i in the first SWinstruction. This is

the correct answer, according to K&R page 213: "A union may be thought
of as a structure all of whose nenbers begin at offset 0..."

There was sone confusion about the second instruction, which produces a
pointer to a nonexistent array element. The array has 10 el ements, nanely
p[0] through p[9]. So why do we nake a pointer past the end of the array?
Because we aren't going to dereference this pointer; we use it only for the
test for the end of the loop! Wen $8 reaches the value in $9, we've gone
past the end of the array, so we stop | ooping.

Scoring: W counted the two uses of $0 as a single answer. Thus there are
four answers here: 160, $0, 8, and 16. Each of these was worth 1/2 point.

4a. Floating point representation

Many people had trouble with this question, partly because you didn't read,
or didn't believe, the part about "the sanme as |EEE." So, during the exam
we got questions like "is the exponent biased?" and "does this include
denorns?" W answered by saying "the sane as | EEE" but of course that
inplies "yes" to both questions.

What is the exponent bias? In |EEE single precision, with an 8-bit exponent
field, the bias is 127, which is (277)-1. For our format, with a 3-bit
exponent field, the bias will be (272)-1, which is 3. An all-zero exponent
field is used for zero and denorns; an all-one exponent field is used for
infinity and NaN, so the range representing nornalized nunbers is 001-110,
whi ch after bias conversion nmeans -2 to 3.

There are four significand bits, plus (except for denorns) an inplicit one
bef ore the binary point.

That neans the | argest representable nunber is
1.1111 * 2723 = 1111.1 = 15 1/2 = 15.5 deci mal .

The smal |l est representable positive nunber is a denorm neaning that
there is no inplicit 1 before the significand. Figuring the exponent is
tricky; even though the exponent field is all zeros, which in bias-3 would
be expected to represent -3, denorms actually use an exponent val ue one
more than that (-2). This is so that the largest denorm 0.1111 * 2~(-2),
is just below the smallest normalized, 1.0000 * 27(-2). (Renenber that
the whol e point of denorns is to avoid a big gap anong the small est
magnitudes.) So it's

0.0001 * 27(-2) = 27 (-4) * 2M(-2) = 2"(-6) = 1/64
or 0.015625 decimal. (We accepted the 1/64 form as the question says.)

Wth 8 bits there are 278 = 256 possible values. But 1/8 of those (32 of
then) have exponent 4, and are therefore infinite or NaN, |eaving 224. And
two of those, +0 and -0, are equal, so there are 223 distinct nunbers exactly
representable in this notation. W also accepted 224, because several people
asked during the exam whether to count +0 and -0 as different. But strictly
speaki ng the answer has to be 223, because the question asks "how nany
nunbers, " not "how many nunber representations.” And +0 is definitely the
sane nunber as -0!

4b. The significand of a float (not including denorns) always has a val ue
between 1 and 2. (More precisely, 1 <=sig <2.) This "fills up" the space
bet ween consecutive powers of 2, as represented by the exponent field. In

ot her words, the nunber of exactly representabl e nunbers between any two
consecutive powers of two is a constant. That is, the nunber of representable
nunbers between 1 and 2 is equal to the nunber of nunbers between 2 and 4,
which is equal to the nunber of numbers between 4 and 8, which is equal to the
nunber between 8 and 16, etc. The nunbers get "thinner" as the nagnitude gets
| arger.

If the nunber of representable numbers between 1 and 2 is equal to the nunber
of representabl e nunbers between 2 and 4, it nust be *larger* than the nunber
of representabl e nunbers between 2 and 3. So the answer is bl. (The
"inclusive" doesn't really affect the outcone; it's just in the question to
make the question unambi guous. Adding one or two to the nunber of numbers in
a range of 2723 is insignificant conpared to taking only half as many

nunber s!)

5a. Cock vs. instruction count

m cr oseconds cycl es instructions m cr oseconds

cycle instruction pr ogr am pr ogr am

500 MHz = 500, 000, 000 cycl es/ second

1 / 500, 000, 000

2 / 1,000, 000, 000 seconds/cycle
= .002 / 1,000,000 = 0.002 microseconds/cycle

So 0.002 * 3 * X =15
X =151/ (0.002 * 3) = 15/ 0.006 = 15,000 / 6 = 2500 instructions.

Anot her way to do it, avoiding having to work out the cycle tinme fromthe
clock rate, is to convert the fundanental equation above to this form

cycl es i nstructions m cr oseconds cycl es

i nstruction pr ogram pr ogram ni crosecond
That gives 3 * X = 15 * 500, because MHz neans cycl es/ ni crosecond.

Sone peopl e asked about the "micro" prefix. You should know t hese!

pi co trillionths p
nano billionths n
mcro mllionths nm
mlli t housandt hs m
kilo t housands k
nmega mllions M
gi ga billions G
tera trillions T
So MHz Megahertz = millions of Hertz = mllions of cycles/second

cycl es/ m crosecond

General ly, capital letters abbreviate nore-than-one nultipliers, and | ower
case letters abbreviate | ess-than-one. The exceptions are k for kilo and the
Geek letter mu for mcro.

5b. The weighted average is
(.3*2) +(.6* 1) +(.1*10) =.6+ .6 +1=2.2

6. Menory allocation.

If all blocks are the sane size, we should maintain a free list that contains
only blocks of that exact size. So we're never in the situation in which we
allocate less than an entire free block, so there's no fragmentation
Similarly, there's no need to coal esce small free blocks to make a big one,
since the size we want is exactly the size we have.

On the other hand, we do still need to maintain a list of free bl ocks, because
over time they'll be scattered anong ot her (sane size) blocks that are in use.
And it's still a good idea to keep the freeing of nenory out of the hands of

human bei ngs by using a garbage collection system (Think about a Lisp system
in which all pairs are the same size, and they're garbage collected!)

So the answers are No, Yes, No, Yes.

7. MPS nergesort.

Because this procedure calls other procedures (including itself), we have to
save $ra, and we have to save our one argument $a0. W al so have to save the
result fromthe first recursive call while we're working on the second
recursive call. That's three things to save, so we need three words of stack
frame. (Aternatively, we can save $s0 and $s1, and use those for the |ist
argunent and for the internediate result.)

mer gesort:
addi $sp, -12 # prol ogue:
sw $ra, 0($sp) # we accept either order of saving
sw $a0, 4(%$sp) # the two things we know at start

add $v0, $a0, $zero # body:
beqz $a0, epi # end test: list ==

lw $t0, 4(%a0)
beqz $t0, epi

jal evens

add $a0, $v0, $zero
jal nergesort

sw $v0, 8($sp)

lw $a0, 4($sp) list (ny arg)
jal odds odds(list)

|ist->next
#
#
#
#
#
#
#
add $a0, $v0, $zero # ret val becones arg
#
#
#
#
#
#
#

end test: list->next ==
evens(list)

ret val becones arg

mer gesort (evens(list))
save the result

jal nergesort mer gesort (odds(list))

add $al, $vO0, $zero ret val becones 2nd arg

lw $a0, 8($sp) saved result becones 1st arg
jal nerge call nmerge

epi: lw $ra, 0($sp)
addi $sp, 12
jr $ra

epi | ogue:
restore $ra and stack
return

This is a conpletely straightforward translation, in standard prol ogue-body-
epilogue form It's possible to shave off a few instructions by being clever
at the cost of clarity; for exanple, by putting the end tests *before* the
prol ogue we coul d avoid all ocating and deal | ocati ng stack space in the base
case. [Extra for experts:] Mdre interestingly, 61A alumi should recognize
the call to nerge() as a tail call -- when it returns, we return. W could
take advantage of that by doing the epilogue things before calling nerge, and
then turning the JAL instruction into a plain junp:

édd $al, $v0, S$zero

ret val becones 2nd arg
Iw $a0, 8($sp) # saved result becones 1st arg
epi: lw $ra, 0($sp) # epil ogue
addi $sp, 12 # restore $ra and stack
] mer ge # goto nerge

In this version our stack frame and nerge's stack frame aren't both on the
stack at the same time, so the nmenmory required to run the program doesn't grow
because of the call to nerge. This is exactly what a Schenme interpreter or
compil er does to inplenent tail call elimnation

But you shouldn't try to be clever when taking an exam Just do the
straightforward thing, as above.

The scoring of this problemwas | ess straightforward than the others.

W wanted a solution with several minor errors, but still basically having
the right structure and nany correct details, to get sone credit. So we
divided all the errors we found into three categories:

M nor errors: One point off per error, up to three errors. So a
solution with a lot of mnor errors but no others got 2 points. Note:
"M nor" doesn't mean "uninportant"! Many of these errors showed

i mportant ni sunder st andi ngs.

Maj or errors: These seenmed to reflect a serious m sunderstandi ng of
the way the M PS hardware works or the whol e idea of procedure
calling. Two points off per error, up to two errors.

Di sasters: These suggested a conplete | ack of understandi ng, and got
Zero points.

There were too many mnor errors to list themall, but here's a representative
sampl e:

Usi ng saved registers ($s0 - $s7, $16 - $23) without saving and
restoring them

Not saving and restoring $ra ($31). But note that not saving and
restoring *anything* counts as a disaster.

Not rel oading the argunment list into $a0 before calling odds().

In the base case test, loading list->next fromnenmory before checking
whether list == NULL. (This leads to a seg fault!)

In the base case test, checking (... & ...) instead of (... || ...).
Typically this means BNEZ NOT_BASE i nst ead of BEQZ BASE

Losi ng the return value ($v0, $2) fromone call after another call.

Thinking that the tenporary registers ($t0 - $t7, $8 - $15) are
preserved over a procedure call.

Not setting $vO0 to list in the base case

Using a LWinstruction in the list == NULL test. (This really
tests list->value == 0.)

Here's a sanple of the major errors

Not using a LWinstruction in the list->next == NULL test. (This
tests &(list->next)==0, which is never true!)

Using LWor SWto copy a value fromone register to another
(LW and SW al ways copy between a register and a nenory | ocation.)

B MERGESORT instead of JAL MERGESORT. (W think this means you never
| earned that recursion doesn't nean "go back to the beginning" in
61A!)

Using a nenory address as an operand of an arithmetic instruction.
(Arithmetic uses only register or imedi ate operands.)

And here are the typical disasters:

A string of consecutive JAL instructions with no transfer of values
bet ween regi sters.

No stack space allocated at all
Not hi ng saved and restored at all

Huge gaps in the code, e.g., only two procedure calls instead of
five (odds, evens, nergesort tw ce, nerge).

Conposi tion of instructions: LWS$A0, JAL EVENS (an attenpt to put
the val ue returned by the JAL into $a0).

If you don't like your grade, first check these solutions. If we
graded your paper according to the standards shown here, and you
think the standards were wong, too bad -- we're not going to grade
you differently fromeveryone else. |If you think your paper was
not graded according to these standards, bring it to your TA

W will regrade the entire examcarefully; we may find errors that
we nissed the first time around. :-)

If you believe our solutions are incorrect, we'll be happy to discuss
it, but you're probably wong!

