
CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

1) (6pts) Number Representation
a. (1/2 pt each) Given the following choice of representation for signed

numbers:

a. 1’s complement
b. 2’s complement
c. Sign and magnitude
d. None of the above

If numbers are 8 bits wide, for each of the bit patterns shown below, write
the letter (a,b,c,d) corresponding to the representation in which each is
interpreted as -23(base 10)

11101001____
10010111____
11101000____
11101010____

b. (1pt) What is the value in decimal of the most negative 8-bit 2’s

complement integer?

c. (1pt) What is the value in decimal of the most positive 8-bit unsigned

integer?

d. (1pt) Write out in hex the 16-bit result of adding the following 2’s

complement numbers: 0xFA25 + 0xB705

e. (1pt) Does the add operation in (d) result in overflow?

CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

2) (6pts) C short answer:

a. (3pts) Consider the following C program.

#include <stdio.h>

char* set(char c, int i) {
 /* See below for line to insert here */
 str[i] = c;
 Return str;
}

int main(){
 char* output;

 output = set(‘o’, 2);

output = set(‘w’, 0);
output = set(‘r’, 1);

printf(“%s”, output);

return 0;

}

For each of the following lines inserted as indicated into procedure set, what
is printed when the program executes? (If the program causes an error during
compilation, say “compilation error”; if it causes an error or undefined results
while running, say “runtime error.”)

a1) static char str[] = “thing”;

a2) char str[] = “thing”;

a3) char *str = malloc(6);

strcpy(str, “thing”);

CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

b. (2pts) Given the following declarations:

char a[14] = “pointers in c”;
char c = ‘b’;
char *p1 = &c, **p2 = &p1;

Cross out any of the following statements that are not correct C:

p1 = a + 5;

&p1 = &a[0];

p2 = a;

*(a + 10) = ‘t’;

*p2 = %c;

c. (1pt) The C language allocates call frames on the stack instead of on the

heap because doing so (circle one)

i. Simplifies allocation and freeing of frames

ii. Speeds up access to local variables, or

iii. Both?

CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

3) (5pts) MIPS short answer:
a. (1pt) For the following MIPS assembly language program:

loop: addi $t0, $t0, -1
 bne $t0, $zero, loop

Translate the second instruction into MIPS machine language and write it in
hex.

b. (1pt) Which best describes the reason that we maintain the stack pointer in

a register? (circle one)
i. The hardware forces use of a stack pointer.

ii. We need a local pointer because we are often limited to relative
addressing.

iii. We need functions to have addresses for use with function pointers
in C.

iv. The stack pointer is just a legacy concept that no longer serves a
purpose.

c. (1pt) Write the MIPS assembly language instructions corresponding to the
following pseudo-instruction: addi $s0, $s1, 0x7FF333

d. (2pts) Given the declaration for a struct point:

struct point {
 union { int i; double d; } x;
 union { int I; double d; } y;
} p[10];

Consider the following C code:

int I;

for(i=0; i<10; i++) {
 p[i].x.i = 0;
 p[i].y.i = 0;
}

Fill in the blanks in the following translation of this C code into MIPS:

 la $8, p # $8 points to p[0]
 addi $9, $8, ____ # $9 points to p[10]
L1: bge $8, $9, L2 # done if past end of array
 sw ___, 0($8) # p[i].x.i = 0
 sw ___, ___($8) # p[i].y.i = 0
 addi $8, $8, ____ # i++
 b L1
L2:

CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

4) (4pts) Floating point.

a. (3pts) Consider a special floating-point representation that is the same as
IEEE single and double precision (with the largest exponent value
representing infinity and NaN), except that the exponent field is 3 bits and
the significand field is 4bits, for a total of 8 bits (once we include the sign
bit). With this representation:

i. What is the value in base 10 of the largest representable positive
number? (infinity and NaN are not numbers.)

ii. What is the value in base 10 of the smallest representable positive
number(not zero)? (infinity and NaN are not numbers. You may
represent the result as a fraction rather than as a decimal.)

iii. How many numbers total can be represented? (infinity and NaN
are not numbers.)

b. (1pt) In IEEE single precision floating point, which is greater: (circle one)
i. The number of representable numbers between 1 and 2 inclusive.

ii. The number of representable numbers between 2 and 3 inclusive.
iii. They are the same.

5) (2pts) Performance.

a. (1pt) A 500MHZ machine takes 3 clock cycles for every instruction. You
wish to make sure that your program completes in less than 15
microseconds. How many instructions should you limit your program to?

b. (1pt) Consider a floating point processor. The typical instruction stream
contains 30% FMUL, 60% FADD, 10% FDIV operations. Each of these
instructions takes the following number of cycles to execute:

FMUL: 2
FADD: 1
FDIV: 10

 What is the average cycles per instruction (CPI)?

6) (2pts) Memory Allocation:

Suppose that you are writing the memory allocator for an application in
which only one size of memory block is ever requested or allocated.

For each of the following concepts, enter YES if the concept is still
relevant even in this situation (all blocks the same size), or NO if the
concept is not relevant in this situation:

a) fragmentation ______
b) list of free blocks ______
c) coalescing free blocks ______
d) garbage collection ______

CS61C B. Harvey
Fall 2003 Midterm Exam 1 J. Wawrzynek

7) (5pts) MIPS coding:

 Here is some C code to sort a list using the mergesort algorithm:

 struct node {
 int value;
 struct node *next;
 };

 struct node *mergesort (struct node *list) {
 if (list == 0 || list->next == 0) {
 return list;
 return merge(mergesort(evens(list)),mergesort(odds(list)));
 }

Translate this procedure into MIPS assembly language, following our
standard conventions for register use (arguments in registers, not stack,
whenever possible). You don’t have to write the helper procedures evens ,
odds , or merge.

