
CS61BL: Data Structures & Programming Methodology Summer 2014

Instructor: Edwin Liao Midterm 1 July 9, 2014

Name:

Student ID Number:

Section Time:

TA:

Course Login:
cs61bl-??

Person on Left:
Possibly “Aisle” or “Wall”

Person on Right:
Possibly “Aisle” or “Wall”

• Fill out ALL sections on this page. (1 point)

• Do NOT turn this page until the beginning of the exam is announced.

• You should not be sitting directly next to another student.

• You may not use outside resources other than your 1 page cheat sheet.

• You have 110 minutes to complete this exam.

• Your exam should contain 6 problems over 14 pages, including the reference sheet.

• This exam comprises 15% of the points on which your final grade will be based (45 points).

• If you have a question, raise your hand and a staff member will come to help you.

• Make sure to check for corrections / clarifications that will be periodically added to the board
at the front of the room.

• Best of luck. Relax – this exam is not worth having a heart failure over.

CS61BL, Summer 2014, Midterm 1 1

Reference Sheet: String
Here are some methods and descriptions from Java’s String class API that you may find useful.

Return type and signature Method description

char charAt(int index)
Returns the char value at the specified
index.

int indexOf(String str)
Returns the index within this string of
the first occurrence of the specified sub-
string.

int indexOf(String str, int
fromIndex)

Returns the index within this string of
the first occurrence of the specified sub-
string, starting at the specified index.

int length() Returns the length of this string.

String replaceAll(String regex,
String replacement)

Replaces each substring of this string
that matches the given regular expres-
sion with the given replacement.

String[] split(String regex)
Splits this string around matches of the
given regular expression.

String subString(int beginIndex)
Returns a new string that is a substring
of this string.

String subString(int beginIndex,
int endIndex)

Returns a new string that is a substring
of this string.

CS61BL, Summer 2014, Midterm 1 2

1 Equality Checks (6 points)
Write a probablyEquals method that takes in two objects and returns true if one or more of
the following are true:

• The two objects are equal (.equals) to each other.

• The two objects are equal (==) to each other.

• The two objects have the same .toString() representation.

• Calling .hashCode() on both objects returns the same int.

Otherwise, probablyEquals returns false. Your method should never crash given any input.
You may assume that for any object instances x and y, x.equals(y) will return the same value
as y.equals(x).

Note: hashCode() is a method that returns an int. All objects inherit this method from the
Object class. For the purposes of this problem, toString() is another method that all objects
inherit from the Object class and that returns a String representation of the object.

public static boolean probablyEquals(Object obj1, Object obj2) {

}

CS61BL, Summer 2014, Midterm 1 3

2 Whose Line is it Anyway? (4 points)
Examine the following implementations of a Point class and Line class:

1 public class Poin t {
2 private i n t myX;
3 private i n t myY;
4
5 public Poin t (i n t inputX , i n t inputY) {
6 th is .myX = inputX ;
7 th is .myY = inputY ;
8 }
9

10 public i n t getX () {
11 return th is .myX;
12 }
13
14 public i n t getY () {
15 return th is .myY;
16 }
17 }

1 public class Line {
2 private Poin t myP1 ;
3 private Poin t myP2 ;
4
5 public Line (Po in t p1 , Po in t p2) {
6 th is .myP1 = p1 ;
7 th is .myP2 = p2 ;
8 }
9

10 public S t r i n g t o S t r i n g () {
11 S t r i n g toRtn = " " ;
12 toRtn += (" (" + myP1. getX () + " , " + myP1 . getY () + ") , ") ;
13 toRtn += (" (" + myP2. getX () + " , " + myP2 . getY () + ") ") ;
14 return toRtn ;
15 }
16
17 public s t a t i c void main (S t r i n g [] args) {
18 Po in t p1 = new Poin t (1 , 2) ;
19 Line myLine = new Line (p1 , p1) ;
20 / / Your code here
21 System . out . p r i n t l n (myLine) ;
22 }
23 }

CS61BL, Summer 2014, Midterm 1 4

(a) In the space below, draw the resulting box-and-arrow (a.k.a. box-and-pointer) diagram after
executing lines 18 and 19 of the Line class (up until the // Your code here line).

(b) In the space below, rewrite the // Your code here with a single line of code so that the
program prints out:

(1,2),(3,4)

CS61BL, Summer 2014, Midterm 1 5

3 Building a Knapsack (12 points)
The following code represents a knapsack that can carry items and keep track of the total weight
of the items it contains:

1 import java . u t i l . A r r a y L i s t ;
2
3 public class Knapsack {
4 protected Ar rayL i s t <St r ing > itemNames ;
5 private Ar rayL i s t < In teger > itemWeights ;
6 private f i n a l i n t weightCapaci ty ;
7 private i n t t o ta lWe igh t ;
8
9 public Knapsack (i n t weightCapaci ty) {

10 itemNames = new Ar rayL i s t <St r ing > () ;
11 itemWeights = new Ar rayL i s t < In teger > () ;
12 th is . weightCapaci ty = weightCapaci ty ;
13 th is . t o ta lWe igh t = 0 ;
14 }
15
16 public void addItem (S t r i n g name, i n t weight) {
17 itemNames . add (name) ;
18 itemWeights . add (new I n t ege r (weight)) ;
19 }
20
21 public void removeItem (S t r i n g name) {
22 i n t i temIndex = itemNames . indexOf (name) ;
23 itemNames . remove (i temIndex) ;
24 itemWeights . remove (i temIndex) ;
25 }
26
27 public i n t getTota lWeight () {
28 return t o ta lWe igh t ;
29 }
30 }

Example of usage (after you implement part a):

Knapsack myKnapsack = new Knapsack(5);
myKnapsack.addItem("Banana", 1);
myKnapsack.addItem("Water Bottle", 3);
myKnapsack.getTotalWeight(); // should return 4
myKnapsack.removeItem("Banana");
myKnapsack.getTotalWeight(); // should return 3

CS61BL, Summer 2014, Midterm 1 6

(a) Add code to the Knapsack class so that after every method call, the totalWeight instance
variable always equals the total weight of all of the items in the Knapsack. You may or may
not have to use all of the boxes below.

Code added immediately after line :

Code added immediately after line :

Code added immediately after line :

CS61BL, Summer 2014, Midterm 1 7

(b) Add code to the Knapsack class so that Knapsacks will never:

• contain two items with the same name
• have a total weight greater than its weight capacity
• contain an item with negative weight
• have a negative capacity

If a user tries to modify a Knapsack to have any of the above properties, an
IllegalStateException (from java.lang) should be thrown with an informative error
message. Assume that the code from part (a) has been implemented correctly. You may or
may not have to use all of the boxes below.

Code added immediately after line :

Code added immediately after line :

Code added immediately after line :

CS61BL, Summer 2014, Midterm 1 8

(c) What is another case of error checking we should add to Knapsack?

(d) Fill out the following template for a ValueKnapsack class that keeps track of items’ values
in addition to their weights. You should use inheritance effectively. Don’t worry about error-
checking for this part. Assume that parts (a) and (b) have been implemented correctly.

public class ValueKnapsack extends Knapsack {

private int totalValue;
private ArrayList<Integer> itemValues;

public ValueKnapsack(int weightCapacity) {

}

public void addItem(String name, int weight, int value) {

}

public void removeItem(String name) {

}

public int getTotalValue() {
return totalValue;

}
}

CS61BL, Summer 2014, Midterm 1 9

4 Acronym Extractor (7 points)
We want to code an extractAcronym method that returns the acronym of an input String. We
will be using the # character in place of whitespace characters for this problem (you may assume
that the input will not have any whitespace characters). An acronym consists of the first non-#
letter of the input String and all non-# characters that immediately follow any # character. For
example, extractAcronym("Not#a##Number") would return "NaN". If there are # characters
at the end of an input String, we ignore them.

(a) In the table below, provide test inputs for extractAcronym that cover at least 4 generalized
input cases (not including the provided example). Include the input String, expected output
String, and what your test case is testing for. Do not reuse the example. Assume that the
input and return value will never be null.

Input String Expected output
What are you testing for?

"Not#a##Number" "NaN"

(The example) Tests that
extractAcronym can handle cases
with multiple consecutive # characters.

CS61BL, Summer 2014, Midterm 1 10

(b) Implement the extractAcronym method:

public static String extractAcronym(String input) {

}

CS61BL, Summer 2014, Midterm 1 11

5 Vote Iterator (10 points)
Write an iterator that takes in an Integer array of vote counts and iterates over the votes. The
input array contains the number of votes each selection received. For example, if the input array
contained the following:

then calls to next() would eventually return 1 twice (because at index 1, the input array has value
2), 2 once, and 4 once. After that, hasNext() would return false.

Provide code for the VoteIterator class below. Make sure your iterator adheres to standard
iterator rules.

import java.util.Iterator;

public class VoteIterator implements Iterator<Integer> {

public VoteIterator(Integer[] votes) {

}

CS61BL, Summer 2014, Midterm 1 12

public boolean hasNext() {

}

public Integer next() {

}

public void remove() {

}
}

CS61BL, Summer 2014, Midterm 1 13

6 Malicious Mallory (5 points)
Eve and Mallory are lab partners in CS61BL. Unfortunately for Eve, Mallory doesn’t get along with
anyone. One day, when Eve isn’t looking, Mallory codes the following method and adds calls to it
in Eve’s code:

1 import java . u t i l . A r r a y L i s t ;
2
3 public void method () {
4 A r r a y L i s t a = new A r r a y L i s t () ;
5 S t r i n g msg1 = "Code not working? Try t u r n i n g your computer o f f and on again ! " ;
6 S t r i n g msg2 = " I s your code running? Then you b e t t e r go catch i t ! " ;
7 S t r i n g msg3 = "You might have f o r g o t t e n a semicolon somewhere . " ;
8 a . add (new I l l ega lArgumentExcept ion (msg1)) ;
9 a . add (new ArrayIndexOutOfBoundsException (msg2)) ;

10 a . add (new NumberFormatException (msg3)) ;
11 i n t index = (i n t) (Math . random () ∗ 10) ;
12 i f (index >= 3) return ; throw a . get (index) ;
13 }

This code is meant to do nothing 70% of the time, and throw one of three random Exceptions the
other 30% of the time. Note: Math.random() returns a random double in the range [0,1).

(a) There is an error with this code. Explain what the error is, and whether it is a compile time
error, a runtime error, or a logic error.

(b) Cross out one line of code above. Rewrite this line of code below so that the code compiles,
runs, and does what Mallory intended.

CS61BL, Summer 2014, Midterm 1 14

