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1 Sometimes Sort of Sorted (8 points)
Let n be some large integer, k < log2 n. For each of the input arrays described below, explain which
sorting algorithm you would use to sort the input array the fastest and why you chose this sorting
algorithm. Make sure to state any assumptions you make about the implementation of your chosen
sorting algorithm. Also specify the big-Oh running time for each of your algorithms in terms of k
and n. Your big-Oh bounds should be simplified and as tight as possible.

(a) Input: An array of n Comparable objects in completely random order

(b) Input: An array of n Comparable objects that is sorted except for k randomly located elements
that are out of place (that is, the list without these k elements would be completely sorted)

(c) Input: An array of n Comparable objects that is sorted except for k randomly located pairs of
adjacent elements that have been swapped (each element is part of at most one pair).

(d) Input: An array of n elements where all of the elements are random ints between 0 and k
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2 The Unsocial Network (4 points)
(a) For each strongly connected component in the directed graph below, draw a circle around all

of the vertices in that strongly connected component.

A

B

C

D E

F

G

H

(b) Give a topological sort ordering of the vertices in the following directed acyclic graph (in other
words, give a linearized ordering of the vertices in the graph).

A B C

D E

F G
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3 Balanced Search Trees (7 points)
For each part below, assume that nodes are ordered alphabetically by their letter (i.e. the value of
"A" is less than the value of "B", which is less than the value of "C", etc...)

(a) Draw the splay tree that results after calling find("A") on the splay tree below.

E

D

C

B

A

(b) Add a "B" node to the AVL tree below by drawing it below. Then draw the tree that results after
the AVL tree balances itself. Show all intermediary steps, if any.

A

C
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(c) Draw the 2-3 tree that results after inserting the following elements in the given order:

1 2 3 4 5 6

(d) Draw the 2-3 tree that results after inserting the following elements in the given order:

4 2 1 3 6 5
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4 Huffman Tree (6 points)
A table of characters and corresponding frequencies is provided below. Next to the table, draw
a valid Huffman encoding tree. Then fill out the codemap table with each character’s encoding
according to your Huffman encoding tree.

Character Frequency

a 5

b 2

c 8

d 7

e 3

f 7

g 1

Draw Huffman encoding tree below:

Fill out the codemap below:

Character Encoding

a

b

c

d

e

f

g
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5 Pair (5 points)
Write a program, Pair.java, that generates the box-and-pointer diagram shown below when
run. Your program should include a class with a main method. In the diagram below, each object’s
static type is labeled next to the corresponding variable name. Each object’s dynamic type is not
shown.
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6 Poorly Named Variables (6 points)
1 public class V {
2 private i n t VVVVV;
3
4 public V( i n t VVVV) {
5 VVVVV = VVVV;
6 }
7
8 private i n t VV( ) {
9 return 0;

10 }
11
12 public double OOOO( ) {
13 return 0;
14 }
15 }

1 public class O extends V {
2 private i n t OOO;
3 }

For each of the following methods, explain whether the O class would still compile if the method is
added to it. If the O class wouldn’t compile, explain why. The O class may have additional methods
/ constructors. The V class does not.

(a) public O() { }

(b) void OO() { OOO = VV(); }

(c) public boolean OOOO() { return false; }
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7 Dijkstra Analysis (8 points)
For each part below, all solutions given in terms of big-Oh must be simplified and as tight of an
upper bound as possible. |E| is the number of edges in the graph and |V | is the number of vertices
in the graph.

(a) Recall that Dijkstra’s algorithm finds the shortest paths from some starting vertex s to all other
vertices in the graph. In terms of big-Oh, |E|, and |V |, how many times does each of the
following priority queue operations get called in one complete run of Dijkstra’s algorithm?

i) enqueue:

ii) dequeue:

iii) isEmpty:

iv) containsKey:

v) update (updates a vertex’s priority value in the priority queue):

(b) In lab, we analyzed the running time of Dijkstra’s algorithm using a priority queue implemented
with a binary min-heap. Now let’s use a priority queue implemented with Java’s HashMap that
maps vertices to their priority values. Assuming that the hash map operations put, get, and
remove take constant time, what are the new big-Oh running times (in terms of |E| and |V |) of
a single call to each of the following operations:

i) enqueue:

ii) dequeue:

iii) isEmpty:

iv) containsKey:

v) update:

(c) With our changes above, what is the new big-Oh running time of Dijkstra’s algorithm (in terms
of |V | and |E|)? Show your work.
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8 Buggy Priority Queue (10 points)
Joe Cool is implementing a priority queue with a binary min-heap using an array list (his code is
provided below). However, his pair programming partner tells him that, with this implementation,
calls to dequeue will not always work as intended.

1 import java . u t i l . A r r a y L i s t ;
2
3 public class MyPrior i tyQueue {
4
5 private Ar rayL i s t < In teger > binMinHeap ;
6
7 public MyPrior i tyQueue ( ) {
8 binMinHeap = new Ar rayL i s t < In teger > ( ) ;
9 binMinHeap . add ( nul l ) ;

10 }
11
12 / / Removes and re tu rns i tem i n p r i o r i t y queue wi th sma l les t p r i o r i t y
13 public I n t ege r dequeue ( ) {
14 In tege r toReturn = binMinHeap . get ( 1 ) ;
15 binMinHeap . set (1 , binMinHeap . remove ( binMinHeap . s ize ( ) − 1) ) ;
16 bubbleDown ( 1 ) ;
17 return toReturn ;
18 }
19
20 / / Adds i tem to p r i o r i t y queue
21 public void enqueue ( In tege r i tem ) {
22 binMinHeap . add ( i tem ) ;
23 bubbleUp ( binMinHeap . s ize ( ) − 1) ;
24 }
25
26 / / Swaps the elements a t index1 and index2 of the b inary min heap
27 private void swap ( i n t index1 , i n t index2 ) {
28 i n t temp = binMinHeap . get ( index1 ) ;
29 binMinHeap . set ( index1 , binMinHeap . get ( index2 ) ) ;
30 binMinHeap . set ( index2 , temp ) ;
31 }
32
33 / / Bubbles up the element i n the b inary min heap ar ray l i s t a t given index
34 private void bubbleUp ( i n t index ) {
35 while ( index / 2 > 0 && binMinHeap . get ( index ) < binMinHeap . get ( index / 2) ) {
36 swap ( index , index / 2) ;
37 index = index / 2 ;
38 }
39 }
40
41 / / Bubbles down the element i n the b inary min heap ar ray l i s t a t given index
42 private void bubbleDown ( i n t index ) {
43 i n t n = binMinHeap . s ize ( ) ;
44 while ( index ∗ 2 < n && binMinHeap . get ( index ) > binMinHeap . get ( index ∗ 2) ) {
45 swap ( index , index ∗ 2) ;
46 index = index ∗ 2;
47 }
48 }
49 }
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(a) Draw an example of a binary min-heap with exactly 5 nodes (either tree or array list form is
fine) such that calling Joe’s dequeue method on your binary min-heap produces an invalid
binary min-heap.

(b) Which lines of code are buggy?
Explain the bug.

(c) Rewrite the lines of code you specified in part b so that his min-heap will work as intended.
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9 Every Other (8 points)
1 public class MyLinkedList {
2
3 private ListNode head ;
4
5 public MyLinkedList ( ListNode inputHead ) {
6 head = inputHead ;
7 }
8
9 public MyLinkedList ( Object i tem ) {

10 head = new ListNode ( i tem ) ;
11 }
12
13 private class ListNode {
14 private Object i tem ;
15 private ListNode next ;
16
17 public ListNode ( Object i npu t I tem ) {
18 th is ( input I tem , nul l ) ;
19 }
20
21 public ListNode ( Object input I tem , ListNode next ) {
22 th is . i tem = inpu t I tem ;
23 th is . next = next ;
24 }
25 / / There may be other methods not shown here
26 }
27 / / There may be other methods not shown here
28 }

On the next page, write an evenOdd method in the MyLinkedList class above that destructively
sets the linked list to contain every other linked list node of the original linked list, starting with the
first node. Your method must also return a linked list that contains every other linked list node of
the original linked list, starting with the second node.

Your method should work destructively and should not create any new ListNode objects. If a
MyLinkedList contains zero elements or only one element, a call to evenOdd should return
null. The last ListNode of each MyLinkedList has it’s next instance variable set to null.

Example: If a MyLinkedList initially contains the elements [5, 2, 3, 1, 4], then a call to evenOdd
should return a MyLinkedList with the elements [2, 1], and after the call, the original
MyLinkedList should contain the elements [5, 3, 4]
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public MyLinkedList evenOdd() {

}
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10 MemoryMap (12 points)
You have been tasked with designing a MemoryMap class that implements the
Map<K, V> interface and supports the following operations:

• V put(K key, V value): Associates the specified value with the specified key in this
map. If the map previously contained a mapping for the key, the old value is replaced.

• V get(K key): Returns the value associated with the input key, or null if there is no
mapping for the key.

• V remove(Object key): Removes the mapping for the specified key from this map if
present. Returns the previous value associated with the input key, or null if there was no
mapping for key.

• ArrayList<K> recent(int m): Returns an ArrayList of the m unique most recently
accessed keys (sorted from most recently accessed to least recently accessed) that still have
associated values in the map. A key k is considered accessed whenever put or get is called
with k as the key. If there are fewer than m elements in the map, returns an ArrayList with
all of the map’s keys. Calls to recent should not modify the state of the MemoryMap in any
way (so calling recent multiple times in a row without any other method calls in between
should result in recent returning identical ArrayLists).

Example:

MemoryMap<String, String> map = new MemoryMap<String, String>();
map.put("A", "1");
map.put("B", "2");
map.recent(2); // Returned list contains: ["B", "A"]
map.get("A"); // Returns "1"
map.recent(2); // Returned list contains: ["A", "B"]
map.put("C", "3");
map.recent(3); // Returned list contains: ["C", "A", "B"]
map.remove("A");
map.recent(2); // Returned list contains: ["C", "B"]
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(a) Explain in words how you would implement MemoryMap (including which data structures you
would use) so that the operations listed on the previous page are time efficient. Space effi-
ciency is not a concern. Do not write any code. Solutions that are as efficient as possible
will receive full credit. Less efficient solutions may receive partial credit.
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(b) For each of the methods listed below, explain how you would implement the method for
MemoryMap and state your planned implementation’s average case running time. State any
assumptions you make about the average case running times of any data structures you would
use in your implementation.

• put:

• get:

• remove:

• recent:
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Reference Sheet: ArrayList
Here are some methods and descriptions from Java’s ArrayList<E> class API.

Return type and signature Method description

boolean add(E e) Append the specified element to the end of the list

boolean contains(Object o) Returns true if this list contains the specified element

E get(int index) Returns the element at the specified position in this list

Iterator<E> iterator()
Returns an iterator over the elements in this list in proper
sequence

E remove(int index) Removes the element at the specified position in this list

boolean remove(Object o)
Removes the first occurrence of the specified element
from this list, if it is present

E set(int index, E element)
Replaces the element at the specified position in this list
with the specified element (returns the previous element
at this position)

int size() Returns the number of elements in this list

Reference Sheet: Map<K, V>

Here are some methods and descriptions from Java’s Map<K, V> interface API.

Return type and signature Method description

V get(Object key)
Returns the value to which the specified key is mapped, or null
if this map contains no mapping for the key

boolean isEmpty() Returns true if this map contains no key-value mappings

V put(K key, V value)
Associates the specified value with the specified key in this map
(returns the previous value associated with key, or null if there
was no mapping for key)

V remove(Object key) Removes the mapping for a key from this map if it is present

Set<K> keySet()
Returns a Set<K> of the keys contained in this map
(the Set<K> class implements Iterable<K>)
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(Blank page)
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