
Birthday: Month: ________ Day: ________

Question #1
a) What is the output of the following code? Write your answer in the box.

int[] myArray = {1, 2, 3, 4, 5};

System.out.println(myArray[4]);

myArray = new int[4];

System.out.println(myArray[3]);

b) Fill in the blanks below to indicate what is printed by running the main method of Mystery.java shown

below. There are no compile-time or run-time errors in this program.

public class Mystery {

 public static void mystery1(boolean [] bArray){

 boolean b;

 for (int i = 0; i< bArray.length; i++){

 b = bArray[i];

 b = !b;

 }

 Mystery.mystery2(bArray); // 1

 bArray[2] = false;

 Mystery.mystery2(bArray); // 2

 bArray = new boolean[4];

 Mystery.mystery2(bArray); // 3

 }

 public static void mystery2(boolean [] bArray){

 int i = bArray.length - 1;

 while (i > 0){

 System.out.print(bArray[i] + " ");

 i--;

 }

 System.out.println();

 }

 public static void main(String [] args){

 boolean [] bArray = {true, true, true, true, false};

 Mystery.mystery1(bArray);

 Mystery.mystery2(bArray); // 4

 }

}

 Write what is printed

// 1

// 2

// 3

// 4

6

5

0

When you create

the new array the

values are set to 0

B is a local variable so

setting it doesn’t affect

the array

Set to a new array with

default values false and

has length of 4 – not 5

Printing

Backwards.

Doesn’t print the last

element. This wasn’t

intended to be tricky but

rather to try to test your

understanding of loops.

false true true true

0 false true false true

0 false false false

0 false true false true

0

Shouldn’t be changed by

modifying the local

variable bArray in the

method mystery1. In the

main we still point to the

old array

Birthday: Month: ________ Day: ________

Question #2

public class ExceptionalStuff {

 public static void crazy(int i) __________________________{

 if (i == 0){

 System.out.println("1");

 throw new NullPointerException();

 System.out.println("2");

 }

 try {

 System.out.println("3");

 throw new ExceptionA();

 System.out.println("4");

 } catch (Exception e) {

 System.out.println("5");

 throw new ExceptionB();

 System.out.println("6");

 } finally {

 System.out.println("7");

 }

 }

a) ExceptionA, and ExceptionB all extend Exception. For the code above to
compile, what must be added to the blank above? (Circle 0 or more of the words below)

throws ExceptionA, ExceptionB, NullPointerException

b) What is printed by ExceptionalStuff.crazy(0);? (You do not need to print

anything for exceptions.)

c) What is printed by ExceptionalStuff.crazy(1); ? (You do not need to print
anything for exceptions.)

6

You don’t need to

declare null pointer

exceptions as thrown

because they are

unchecked.

Once the nullpointer

exception is thrown – no

other code executes.

Because it is not inside of

a try. So the 2 is never

printed.

1

3

5

7

4 and 6 are never printed

because they come after

an exception that is

thrown. The finally is

always executed last.

This is thrown by the

method and must be

caught

All ExceptionAs

that are thrown

are caught so it is

not necessary to

add to the blank

Birthday: Month: ________ Day: ________

Question #3
For each example of code, respond whether or not it will compile. If it compiles, please respond whether or
not it will run without errors. If it runs without errors and has a return value, please write the return value.

interface X {

 int method();

}

class Y implements X {

 int method(){

 return 0;

 }

 private double method(String arg){

 return 12.20;

 }

}

class Z extends Y{

 double method(String arg){

 return 3.14;

 }

}

public class testXYZ{

 public static void main(String[] args) {

// Code – Each group of lines is
independent

Compiles?
Runs

without
errors?

Return
value?

(new Y()).method(“hi”);

This method is private for Y
 NO

(new Z()).method();

Works
YES YES 0

((Z) (new Y())).method(“yo”);

You promise it is a Z, but it

isn’t so it has a runtime

error

YES NO

X x1 = new Z();

Y y1 = (Z) x1;

Z is a subclass of Y so you

can cast to a Z and set equal

to a Y reference.

YES YES

X[] xarr = {new Y(), new X()};

You can’t make a new X()

because it is an interface.

 NO

Y[] yarr = {new Y(), new Z()};

Works –Z is a subclass of Y so

you can put it in a Y array

YES YES

((Y) (new Z())).method(“hey”);

Y’s do not have a public

method that takes a string.

 NO

X x2 = new Z();

Z z2 = (Y) x2;

z2.method();

you can’t cast to a Y and then

set it to a z. You must cast

to a Z.

 NO

X x3 = new Z();

x3.method(“hello”);

X doesn’t have a method that

takes in a String.

 NO

 }
}

9

Birthday: Month: ________ Day: ________

Question #4
Fill in the blanks below with legal Java to produce the output indicated in each comment. If it is impossible

write “IMPOSSIBLE” in the blank. You may not create any additional objects!

public class Parent {

 public void feed(Parent p){

 System.out.println("Parent feed Parent");

 }

 public void feed(Child c){

 System.out.println("Parent feed Child");

 }

}

public class Child extends Parent {

 public void feed(Parent p){

 System.out.println("Child feed Parent");

 }

 public void feed(Child c){

 System.out.println("Child feed Child");

 }

 public static void main(String[] args)

 {

 Parent p = new Child();

 // Child feed Child

 // Child feed Parent

 // Parent feed Child

 // Parent feed Parent

p = new Parent();

 // Child feed Child

 // Child feed Parent

 // Parent feed Child

 // Parent feed Parent

 }

}

4

p.feed((Child) p)

0
p.feed(p)

0 Impossible

0 Impossible

0

Impossible

0
Impossible

0 Impossible

0 p.feed(p)

0

Birthday: Month: ________ Day: ________

Question #5 (continued on next page)
Below is a modification of code from the Account class. Read the syntactically valid code provided and
debug the method removePoorParents(). This method should remove any parent from the chain of
parents that has a balance less than 1,000. An Account that has their parent Account removed should still
be able to access the parent of their former parent Account (Assuming that parent Account has a balance
of 1000 or greater.)

a) Fill in the main method below with code to demonstrate the logical error in

removePoorParents(). Also fill in the blanks to explain the error.

public class Account {

 private Account myParent;

 private int myBalance;

 public Account(int balance, Account parent) {

 this.myBalance = balance;

 this.myParent = parent;

 }

 public void removePoorParents() {

 if (this.myParent != null) {

 if (this.myParent.myBalance < 1000) {

 this.myParent = this.myParent.myParent;

 if(this.myParent == null){

 return;

 }

 }

 this.myParent.removePoorParents();

 }

 }

 public static void main(String[] args) {

 }

}

/* At this point _________________ is ______________________________

 * but it should be __

 */

4

It keeps your parent

even if your parent is

poor.

Account a1 = new Account(10, null);

Account a2 = new Account(10, a1);

Account a3 = new Account (10, a2);

a3.removePoorParents();

Birthday: Month: ________ Day: ________

Question #5 (continued from previous page)

b) Modify the removePoorParents() method below to fix the bug you demonstrated in part a).

 public void removePoorParents() {

 if (this.myParent != null) {

 if (this.myParent.myBalance < 1000) {

 this.myParent = this.myParent.myParent;

 if(this.myParent == null){

 return;

 }

 }

 this.myParent.removePoorParents();

 }

 }

4

this.removePoorParents();

0

This is one of about 5

solutions that we saw or

came up with. There are

probably many more.

