

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

1

Exam information

The average score on the exam was 17.9; the median was 17. (Were you to receive a
grade of 23 on both your midterm exams, 45 on the final exam, plus good grades on
homework and lab, you would receive an A–; similarly, a test grade of 16 may be pro-
jected to a B–.)

Problem 1 (3 points)

This problem involved identifying an incorrect parameter declaration in a method
that would cause two apparently identical

LineNumber

 objects to not be identified as
identical by the

HashMap

put

 method.

First, we can identify some noncandidates for the incorrectly declared method. We
can’t touch anything in the

HashMap

 class, and

Expression

 methods aren’t involved
in hash table insertion. That narrows down the problem to the

LineNumber

 class.

We know that the

put

 method, given a

LineNumber

 and some associated value as
argument, does the following:

1. It calls

LineNumber.hashCode

 to determine the hash value of the

LineNumber

.

2. Using

LineNumber.equals

, it compares the

LineNumber

 to everything in the table
with the same hash value to see if a key/value pair with the given

LineNumber

 as
key is already in the table.

3. If it finds a match, it replaces the associated value by the second argument to

put

.
If not, it inserts the

LineNumber

/value pair into the table.

The

get

 method does steps 1 and 2, and returns the associated value if it finds the

LineNumber

 among the keys.

An important step in the design of hashable objects is the overriding of

Object.hash-
Code

 and

Object.equals

.

Object.hashCode

 merely returns the machine address of the
object;

Object.equals

 returns

true

 only when an object is compared to itself. The two

LineNumber

 objects are seen as different by the

Object

 methods:

Object.hashCode

returns two different hash values and

Object.equals

 returns

false

 when comparing
them.

Thus a possible cause of the problem is the failure to override

hashCode

 or

equals

.
Supplying a parameter for

hashCode

 or a parameter of an incorrect type to

equals

,
e.g. saying

boolean equals (LineNumber n) ...

instead of

boolean equals (Object obj) ...

would produce the observed behavior; either error would result in an inability to
retrieve the first

LineNumber

 object from the table.

Mentioning the fact that the two

LineNumbers

 were different objects earned you at
least 1 point for this problem. Mentioning the relevance of the

equals

 or

hashCode

method earned you at least 1 other point.

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

2

Problem 2 (6 points)

You were to design a data structure named

songsByGenre

 for songs that would yield
fast retrieval by genre. A

HashMap

 table that associates each genre with

the collec-
tion of songs of that genre

 would be the most appropriate data structure. One might
use an

ArrayList

 or a

LinkedList

 to represent the collection. Adding a song to this data
structure would involve the following

put

 method:

void put (Song s) {
LinkedList list = songsByGenre.get (s.genre ());
if (list == null) {

list = new LinkedList ();
songsByGenre.put (s.genre (), list);

}
list.add (s);

}

Parts a and b were each worth 3 points. Part a involved the design of the data struc-
ture. If your design involved linear search through all the genres rather than the
direct access of a hash table, you lost 1 point in this part. Part b involved the imple-
mentation of the design as reflected by the

put

 method. The answer

void put (Song s) {
songsByGenre.put (s.genre (), s);

}

was

very

 common, perhaps due to a misconception that consecutive calls to

Hash-
Map.put

 with the same keys would somehow collect the corresponding values instead
of

replacing

 the mapping in the table. This answer earned 0 points in part b.

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

3

Problem 3 (7 points)

This problem requested a

BinaryTree

 method that built an expression tree that rep-
resents its parenthesis-free

String

 argument, taking into account the conventional
precedence relationship between addition and multiplication.

Here’s a solution.

public BinaryTree noParensArithExprTree (String expr) {
BinaryTree t = new BinaryTree ();
t.myRoot = helper (expr);

}

private TreeNode helper (String expr) {
if (expr.length () == 1) {

return new TreeNode (expr);
}
String opnd1, opnd2;
int plusPos = expr.indexOf ('+');
int timesPos = expr.indexOf ('*');
if (plusPos != -1) {

opnd1 = expr.substring (0, plusPos);
opnd2 = expr.substring (plusPos+1);
return new TreeNode ("+", helper (opnd1), helper (opnd2));

} else {
opnd1 = expr.substring (0, timesPos);
opnd2 = expr.substring (timesPos+1);
return new TreeNode ("*", helper (opnd1), helper (opnd2));

}
}

Most solutions to this problem were close to correct. 1-point deductions resulted from
off-by-one errors in a call to

substring

 or incorrectly checking for a variable name. For
answers further from correct (e.g. a couple of you submitted pseudocode instead of
Java), you needed a recursive call to get at least 2 points.

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

4

Problem 4 (7 points)

This problem involved devising informative test cases for deletion in a quad tree. The
test suite we were looking for was four out of the following five cases:

description situation tree transformation

deletion
leaving an
empty tree

replacement of
two nodes by
one in the next
larger region

the previous
case, with
more than one
level of the tree
restructured

4
3
2
1
0
-1
-2
-3

-3 -2 -1 0 1 2 3 4

4
3
2
1
0
-1
-2
-3

-3 -2 -1 0 1 2 3 4

4
3
2
1
0
-1
-2
-3

-3 -2 -1 0 1 2 3 4

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

5

You lost 1 point for a case that merely involved removal of a nonempty branch of the
tree from a node with other children, on the grounds that it provides less evidence of
correctness of the code than a removal that requires more radical restructuring of
the tree. You received a 2-point deduction for a test case that was the same as one of
your other cases except for the tree level of the node being deleted.

replacement of
a full node by a
mixed node
with three
children

the previous
case, with
more than one
level of the tree
restructured

description situation tree transformation

4
3
2
1
0
-1
-2
-3

-3 -2 -1 0 1 2 3 4

4
3
2
1
0
-1
-2
-3

-3 -2 -1 0 1 2 3 4

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

6

Problem 5 (7 points)

For this problem, you were to write a method that deletes the element at array posi-
tion

k

 in a binary max heap of

n

 elements, then to provide a tight big-Oh estimate of
the running time of your method. Where the element to delete is the top of the heap,
we merely use the standard heap removal algorithm. Deleting the last element in
the heap involves only a removal of the element from the

myValues

 array. For other
elements, the most efficient removal method essentially involves two steps:

1. Restore the heap

shape

 by replacing the

k

th element by the last element.

2. Restore the heap

ordering

 by bubbling the new

k

th element up or down.

Given below are two examples that show that

both

 bubbling directions must be con-
sidered (the element being deleted is circled in each example).

The worst case time required by this algorithm depends on the bubbling direction of
the new

k

th element. If it moves up the tree, the worst case time is

O(log k)

, the

depth of the heap representing elements 0, ...,

k

. If it moves down the tree, it will
move at most

O(log n – log k)

 levels.

A slower algorithm removes the

k

th element from the

myValues

 vector (an

O(n–k)

operation) and then applies an algorithm used in Heapsort to create a heap from

n

elements in

O(n)

 operations. The heap creation method is named

heapify

 in

Data
Structures into Java

. Total time required is

O(n)

.

An even slower method merely does heap insertion of elements

k+1

 through

n–1

. In
general, this is essentially an

O(n log n)

 operation, though it’s faster when

k

 is close
to

n

.

There were two noteworthy incorrect solutions. One was to promote the larger of ele-
ment

k

’s two children, then to promote the larger child of the promoted element, and
so on to the last level of the heap. This method, however, usually produces a “hole” in
the bottom level of the heap; the deletions in the diagram above demonstrate this
flaw. A second was to remove the

k

th element from the

myValues

 vector and then bub-
ble only the new

k

th element up or down. This sliding-down process, however, can
dramatically affect the heap structure, as shown on the next page.

15

14

13

1211

10

9 8

7

6

54

3

2 1 12 11 98 5 4 21

15

7

36

14

1013

requires bubbling up of the 12
after it replaces the 3

requires bubbling down of the 2
after it replaces the 13

CS 61BL (Clancy) Solutions and grading standards for exam 2
Fall 2004

7

Part a of this problem, the design of the

delete

 method, was worth 5 points, and
part b, the analysis of your method, was worth 2. In part b, a correct estimate of the
time your algorithm would take was worth 2, an insufficiently specific estimate was
worth 1, and an incorrect estimate received 0. Deductions in part a were as follows:

• Overlooking the need to consider both bubbling directions in the most efficient
algorithm: –1.

• Using the

O(n)

 heap recreation algorithm: –2.

• Using that algorithm but calling it “heap sort”: –3.

• Heap-inserting everything after position

k: –3.

• Repeatedly promoting the larger child, starting at the deleted element: –3.

• Some other algorithm that either didn’t produce a heap or did so in O(n2) time or
worse: –4.

Insufficiently detailed explanations resulted in avoidable deductions for some of you.
Examples of overly vague solutions included using the term “insert” without specify-
ing whether you meant heap insertion or vector insertion, using “child” without say-
ing which child, using “successor” without saying what that was or how you would
find it, or calling one of the Data Structures into Java methods without giving its
argument.

12 11 98 5 4 21

15

7

36

14

1013

11 8 59 4 1 2

15

13

123

7

610

heap before deletion elements after deletion;
violations of the order property

are circled

