
CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 1

Problem 1 (3 points)
While working on his solution to project 2, Mike Clancy encountered an interesting bug. His

program includes a LineNumber class that supplies, among other methods, a constructor that

builds a LineNumber object from a String . At the end of each call to extendProof , he stores

the current line number and expression in a HashMap, then increments the line number and

returns.

One of Mike’s early tests cases involved the following code, which produced the error message

about something being really wrong:

 HashMap lineValues = new HashMap ();
 ...
 lineValues.put (new LineNumber (“1.1”), new Expres sion (“(a|b)”));
 Expression expr = lineValues.get (new LineNumber (“1.1”));
 if (expr == null) {
 System.err.println (“something is really wrong he re”);
 }

The problem turned out to be an incorrect parameter declaration in a method. Identify the

method, describe why the error would produce the indicated behavior, and supply the correct

method header.

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 2

Problem 2 (6 points)

Part a

Describe, in terms that another CS 61BL student can easily translate into code, a data structure

for songs named songsByGenre that would enable iteration of all songs of a given genre to be as

fast as possible. Use java.util classes wherever possible. Assume that songs are represented by

the Song class from project 1, which provides a constructor and the following methods:

 public CD cd ();
 public String title ();
 public String artist ();
 public String genre ();
 public Time time ();

Part b

Write the put method that adds a Song object to your data structure. This problem will be graded

only if your answer to part a allows sufficiently fast iteration by genre.

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 3

Problem 3 (7 points)

Write the BinaryTree.noParensArithExpTree method on the next page. It is given as

argument a String representing an arithmetic expression, and returns a corresponding

expression tree. The String argument will be nonempty and will consist only of the characters

‘*’, ‘+’, and lower case letters (you don’t need to verify this). Uses of + and * should associate to

the right; e.g. the expression “a*b*c” means (a*(b*c)) .

In translating the expression to a tree, you should give multiplication higher precedence than

addition as you do in conventional algebraic notation. Some examples:

expression a a+b*c a*b+c

trees

 “a”

 “+”

“a” “*”

 “b” “c”

 “+”

 “*” “c”

“a” “b”

expression a*b+c*d*e+f

tree

 “+”

 “*” “+”

 “a” “b” “*” “f”

 “c” “*”

 “d” “e”

You may use helper methods, but don’t add any instance variables. Relevant methods in the

String class are the following.

• indexOf returns the position in the string of its character argument or -1 if the character

does no appear in the string.

• substring , given two int arguments beginIndex and endIndex , returns the substring

that starts at position beginIndex and ends at endIndex-1 . With only one position

argument, it returns the substring from the given position to the end of the string.

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 4

Your answer to problem 3
// Return a binary expression tree that represents the given expression string, with

// * having higher precedence than + and consecutive uses of * or + associating to the right.

// Precondition: the expression is nonempty and contains only *, +, and single-character

// variable names.

public BinaryTree noParensArithExprTree (String exp r) {

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 5

Problem 4 (7 points)

Suppose you were required to add a remove method to the QuadTree class you complete in lab

(with the contains method and a full node detector). It would be declared as

 // Remove p from the set of points represented by this quad tree.

 // Precondition: p is a member of the set of points represented by this quad tree.

 void remove (Pt p) {
 ...
 }

Below, give four additional points as test arguments to remove that collectively would provide

you the most evidence of the correctness of the remove method. Also describe the evidence of

correctness they would provide. An example test call is provided. Unlike in the example, your

calls should all assume that the point to be deleted is somewhere in the tree.

quad tree situation point to be

deleted

rationale for test

(-1,0)

check what happens when

the precondition isn’t

satisfied

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 6

quad tree situation point to be

deleted

rationale for test

CS61BL, FALL, 2004, MIDTERM 2, CLANCY

 7

Problem 5 (7 points)

Part a

In terms that another CS 61BL student can easily translate into Java code, provide a pseudocode

implementation of the following method for the Heap class:

 // Remove the item at position k in the myValues vector;

 // myValues represents a legal binary max heap of the remaining elements

 // upon return from delete.

 // Precondition: 0 ≤ k < myValues.size ()

 void delete (int k) {
 . . .
 }

You may refer to methods in Data Structures into Java or in the Course Portal without

describing them further. Your method should run as fast as possible in the big-Oh sense.

Part b

Give a big-Oh estimate that’s as specific as possible for the number of comparisons your method

needs to delete the k th item in the heap, along with a brief explanation of your answer.

