

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

1

Problem 1

Part a (2 points)

The given program segment prints 1. The call to

println

 results in a call to

toString

,
which calls the

value

 method. The

ModNCounter

 object uses the

Counter toString

method. However, it uses the

ModNCounter

value

 method, even though

toString

appears only in the

Counter

 class, because a

ModNCounter

 will always use its own
version of an overridden method.

Part b (5 points)

Here’s the definition of the

SeasonProgression

 class.

public class SeasonProgression extends ModNCounter {

public SeasonProgression () {
super (4);

}

public String toString () {
int n = value (); // super.value ()

 works too.

if (n == 0) {
return "spring";

} else if (n == 1) {
return "summer";

} else if (n == 2) {
return "autumn";

} else {
return "winter";

}
}

}

You could have used a

switch

 to select the appropriate string. (We didn’t cover

switch

, but you may have learned about it when studying another C-based lan-
guage.) Another possibility is to access an array:

public String toString () {
String [] seasonNames = {"spring", "summer", "autumn", "winter"};
return seasonNames[value ()];

}

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

2

Problem 2

Part a (6 points)

There were three operations to be supplied to the given framework:

• the initialization of the

mySeqs

 array;

• the initialization of each

IntSequence

 element of the

mySeqs

 array;

• the inclusion of each relevant input value in the appropriate

IntSequence

.

Here’s the code, with the statements you were to add in boldface..

public SeqArray (BufferedReader in) throws Exception {
int n = nextInt (in);

mySeqs = new IntSequence [arrayLen];

for (int k1=0; k1<arrayLen; k1++) {
int seqLen = nextInt (in);

mySeqs[k1] = new IntSequence (m);

for (int k2=0; k2<seqLen; k2++) {
int x = nextInt (in);

mySeqs[k1].addToSequence (x);

}
}

}

Part b (3 points)

The given code fails to handle a 0-length

IntSequence

 correctly. Suppose, for exam-
ple, that the first

IntSequence

 is empty. The variable

enum

 is correctly initialized to
an enumeration of the empty sequence’s elements. However, the

hasMoreElements

method allows us to call

nextElement

, which immediately tries to get the next

IntSe-

quence

 element, which doesn’t exist. (An

ArrayIndexOutOfBoundsException

 probably
results.)

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

3

Part c (6 points)

Our intended solution was to maintain the following invariant property:

•

enum.nextElement ()

 is the next element to be returned in the

SeqArray

 enumera-
tion.

This would be done by changing the constructor and

nextElement

 as follows.

A variation of the

advance

 method checks

mySeqs[index].isEmpty

 before calling the

IntSequence

elements

 method.

A loop or recursive call is necessary to avoid the situation of consecutive empty

IntSe-

quences

. (You encountered this situation in other contexts in earlier lab exercises.)

Problem 3

This was worth 8 points. The diagram below portrays the situation at the start of the
call

rotate (2)

. The boxes outline in bold are to be updated. Dotted lines indicate the
new values of

myHead

 and

myTail

; the

myCdr

 field of the last

ConsNode

 should be
pointed at the head of the list, and the

myCdr

 field of the second

ConsNode

 should be
set to

null

.

public ElemEnumeration () {
index = 0;
advance ();

}

private void advance () {
while (index < mySeqs.length) {

enum = mySeqs[index].elements ();
if (enum.hasMoreElements ()) {

return;
}
index++;

}
}

public int nextElement () {
int x = enum.nextElement ();
if (!enum.hasMoreElements ()) {

index++;
advance ();

}
return x;

}

myHead myTail

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

4

Here are two implementations, one iterative and one recursive. The recursive ver-
sion does

k

 rotations rather than just one.

public void rotate (int k) {
if (k>0) {

// Find node before the new head.
ConsNode newTail = myHead;
for (int k2=1; k2<k; k2++) {

p = p.myCdr;
}
ConsNode temp = myHead;
myHead = p.myCdr;
myTail.myCdr = temp;
myTail = p;
p.myCdr = null;

}
}

public void rotate (int k) {
if (k>0) {

myTail.myCdr = myHead;
myTail = myHead;
myHead = myHead.myCdr;
myTail.myCdr = null;
rotate (k-1);

}
}

