CS 61BL (Clancy) Solutions for exam 1
Fall 2004

Problem 1

Part a (2 points)

The given program segment prints 1. The call to printin results in a call to toString,
which calls the value method. The ModNCounter object uses the Counter toString
method. However, it uses the ModNCounter value method, even though toString
appears only in the Counter class, because a ModNCounter will always use its own
version of an overridden method.

Part b (5 points)

Here’s the definition of the SeasonProgression class.
public class SeasonProgression extends ModNCounter {

public SeasonProgression () {
super (4);

}

public String toString () {
int n = value (); // super.value () works too.
if (n == 0) {
return "spring";
} else if (n == 1) {
return "summer";
} else if (n == 2) {
return "autumn";
} else {
return "winter";

}

}

You could have used a switch to select the appropriate string. (We didn’t cover
switch, but you may have learned about it when studying another C-based lan-
guage.) Another possibility is to access an array:

public String toString () {

String [] seasonNames = {"spring", "summer", "autumn", "winter"};
return seasonNames[value ()];

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

Problem 2

Part a (6 points)

There were three operations to be supplied to the given framework:

¢ the initialization of the mySeqs array;
¢ the initialization of each IntSequence element of the mySeqs array;
¢ the inclusion of each relevant input value in the appropriate IntSequence.
Here’s the code, with the statements you were to add in boldface..
public SeqgArray (BufferedReader in) throws Exception {
int n = nextInt (in);
mySeqs = new IntSequence [arraylLen];
for (int k1=0; kl<arrayLen; kl++) {
int seqlLen = nextInt (in);
mySeqgs[kl] = new IntSequence (m);
for (int k2=0; k2<seqLen; k2++) {
int x = nextInt (in);
mySeqgs[kl] .addToSequence (x);

}
Part b (3 points)

The given code fails to handle a 0-length IntSequence correctly. Suppose, for exam-
ple, that the first IntSequence is empty. The variable enum is correctly initialized to
an enumeration of the empty sequence’s elements. However, the hasMoreElements
method allows us to call nextElement, which immediately tries to get the next IntSe-

quence element, which doesn’t exist. (An ArraylndexOutOfBoundsException probably
results.)

CS 61BL (Clancy) Solutions for exam 1
Fall 2004

Part ¢ (6 points)
Our intended solution was to maintain the following invariant property:

e enum.nextElement () is the next element to be returned in the SeqArray enumera-
tion.

This would be done by changing the constructor and nextElement as follows.

public ElemEnumeration () { public int nextElement () {
index = 0; int x = enum.nextElement ();
advance (); if (!enum.hasMoreElements ()) {
} index++;
private void advance () { advance ();j
while (index < mySegs.length) { }
= : return Xx;
enum = mySeqgs[index].elements (); !
if (enum.hasMoreElements ()) { }
return;
}
index++;

}

A variation of the advance method checks mySeqs[index].isEmpty before calling the
IntSequence elements method.

A loop or recursive call is necessary to avoid the situation of consecutive empty IntSe-
qguences. (You encountered this situation in other contexts in earlier lab exercises.)

Problem 3

This was worth 8 points. The diagram below portrays the situation at the start of the
call rotate (2). The boxes outline in bold are to be updated. Dotted lines indicate the
new values of myHead and myTail; the myCdr field of the last ConsNode should be
pointed at the head of the list, and the myCdr field of the second ConsNode should be
set to null.

myHead myTail

CS 61BL (Clancy)

Fall 2004

Solutions for exam 1

Here are two implementations, one iterative and one recursive. The recursive ver-

sion does k rotations rather than just one.

public void rotate (int k) {

}

if (k>0) {
// Find node before the new head.
ConsNode newTail = myHead;

for (int k2=1; k2<k; k2++) {

p = p.myCdr;
}
ConsNode temp = myHead;
myHead = p.myCdr;
myTail.myCdr = temp;
myTail = p;
p.myCdr = null;

public void rotate (int k) {

if (k>0) {

myTail.myCdr = myHead;
myTail = myHead;
myHead = myHead.myCdr;
myTail.myCdr = null;
rotate (k-1);

