
CS61B (Clancy)
Spring 1996
Exam 3, solutions, and grading standards.

April 12, 1996
Exam 3

 Read and fill in this page now.
Do NOT turn the page until you are told to do so.

Your name:
Your login name:
Your lab section day and time:
Your lab t.a.:
Name of the person sitting to your left:
Name of the person sitting to your right:

Problem 0 __
Problem 1 __ __ __
Problem 2 __
Problem 3 __
Problem 4 __
Problem 5 __ __

Total: __/20

 This is an open-book test. You have approximately fifty minutes to
complete it. You may consult any books, notes, or other paper-based
inanimate objects available to you. To avoid confusion, read the problems
carefully. If you find it hard to understand a problem, ask us to explain it. If
you have a question during the test, please come to the front or the side of the
room to ask it.
 This exam comprises 10% of the points on which your final grade will
be based. Partial credit will be given for wrong answers. Your exam should
contain six problems (numbered O through 5) on nine pages. Please write
your answers in the spaces provided in the test.
 Anywhere you are directed to write a function, your solution may
include auxiliary functions. You need not rewrite a function that appears in
Deitel and Deitel, in Carrano, or in any of the CS 61B handouts; merely cite
the page in the textbook or the handout in which the function appears.
A few students are taking this exam next week. Do not discuss this
exam with them, or post any news about the exam until next Wednesday.
 Relax--this exam is not worth having heart failure about.

CS 61B, Midterm #3 and solutions, Spring 1996

1

Problem 0 (1 point, 1 minute)
 Put your login name on each page. Also make sure you have provided
the information requested on the first page.

Problem 1 (3 points, 8 minutes)
 A debugged version of the code for heap verification and insertion used
in lab assignment 11 appears below. Buestions in parts a and b refer to this
code.

heaps.h

class Heap (
public:
 Heap (ifstream&);
 bool IsHeap ();
 void Insert (int);
private:
 int size;
 Vector<int> values;
};

heaps.cc

Heap::Heap (ifstream& valuesIn):
 size(0), values(some positive integer) {
 int value;
 while (valuesIn >> value) {
 values[size] = value;
 size++;
 };
 assert (IsHeap ());
}

bool Heap::IsHeap () {
 for (int k=O; k<size/2; k++) {
 if (values[k] < values[2*k+ll) {
 return false;
 }
 if (k < (size-1)/2 && values[k] < values[2*k+21] {
 return false;
 }
 }
 return true;
}

void Heap::Insert (int newValue) {
 values[size] = newValue;
 size++;

CS 61B, Midterm #3 and solutions, Spring 1996

2

 for (int k=size-l; k>0; k = (k-1)/2) {
 if (values[k] < values[(k-1)/2]) {
 break;
 }
 int temp = values[k];
 values[k] = values[(k-1)/2];
 values[(k-1)/2] = temp;
 }
}

Part a
Suppose that a heap is declared with the statements
 ifstream fileIn ("data");
 Heap h (fileIn);
and the data file contains the values
6
3
5
1
2
4

If the values as input form a max heap--that is, the call to IsHeap at the end
of the Heap constructor returns true--draw the resulting heap. If the values
as input do not form a max heap, display the value of k at which IsHeap
returns false.

Part b
 Draw the heap that results from starting with an empty heap and
using the Insert function to insert the values in the opposite order, that is,
4
2
1
5
3
6
Show your work for full credit.

Part c
 In the original undebugged version of IsHeap, the loop body was as
follows:

 if (values[k] < values[2*k+l] || values[k] < values[2*k+2]) {
 return false;

CS 61B, Midterm #3 and solutions, Spring 1996

3

 }
This code correctly checks that some arrangements of values in the values
array form a max heap. Fill in the blank in the statement below to describe,
as completely as possible, all value arrangements for which the undebugged
IsHeap function correctly determines whether or not the values form a heap.

IsHeap correctly determines whether the elements of values fom
a max heap when value.size () is __________.

Problem 2 (6 points, 15 minutes)
 Describe the implementation of a generalized vector class called
GenVector. Its constructor takes as argument a list of the integers to be used
as legal subscripts for the GenVector object. For example, passing the
constructor a list containing the integers -5, 42, and 363 should set up a
three-element GenVector.
 Your implementation should allow fast execution of the following
operations for large subscript sets:
- retrieving the value associated with a given index (the [] operation for
 regular Vectors);

- replacing the value associated with a given index by a new value (the
 operation analogous to assignment with elements of regular Vectors)

- detection of whether a given index value is a legal subscript for the
 GenVector object.
It should also not use an extravagant amount of memory when the subscript
set is small.
 Your description should specify what data structure is used to imple-
ment the generalized vector, what it contains and, if your data structure
includes an array, how big the array is. You should also explain how the
expression a[k] would be evaluated for a given generalized vector a and
integer k. Your description should be in terms suitable for another CS 61B
student to understand how it would be translated into code.

Problem 3 (5 points, 14 minutes)

 Suppose that the environment for homework assignment 9+10 is
represented as a List of objects of class Swimmer*. Swimmers have the
following properties:

- each Swimmer object represents either a fish or a shark;

- Swimmer member functions include a function IsFish that returns true
 if the Swimmer object represents a fish and fals otherwise.

Given below is a class definition for Lists of Swimmer* objects.

CS 61B, Midterm #3 and solutions, Spring 1996

4

 struct ListNode (
 Swimmer* info;
 ListNode* next;
 };
 class List (
 public:
 // (public member functions are defined here)
 // Initialize an iterator for fish or sharks.
 void InitIterator (bool);
 / / See if more of the requested type of swimmer remain.
 bool MoreRemain ();
 // Get the next of the requested type of swimmer.
 Swimmer* Next ();
 private:
 int size;
 ListNode* head; // pointer to first thing in
the list
 };

 You are to implement the three iterator functions for Swimmers.
InitIterator takes a boolean argument; a true value specifies that the iteration
should proceed through only the sharks in the environment, while a false
value specifies a fish iterator. Next returns a pointer to the next of the
specified type of Swimmer, and MoreRemain says whether more of the
specified type of Swimmer remain to be returned. Thus step 1 of the Wa-Tor
simulation algorithm would be done as follows:

 List environment;
 ...
 environment.InitIterator(false) ; // iterate through fish
 while (MoreRemain ()) {
 Swimmer* fishPtr = Next ();
 // determine if the fish moves or breeds
 }

and step 2 would be

 environment.InitIterator(true); // iterate through sharks
 while (MoreRemain ()) {
 Swimmer* sharkPtr = Next ();
 // determine if the shark eats, moves, breeds, or dies
 ...
 }

 Your solution will be penalized for unnecessary inefficiency. You are
not to call any of the existing List member functions, though you may define
your own private auxiliary functions. Assume that the fish and sharks are
ordered appropriately in the list, i.e. in increasing order by position (row by
row and from left to right within a row).
 Put your solution--the code you would add to the lists.cc file--below.
We will assume that undefined variables your code includes will be

CS 61B, Midterm #3 and solutions, Spring 1996

5

definedas private data members and that any auxiliary functions you define
will be declared as private member functions unless you specify otherwise.

void List::InitIterator (bool sharkIterating) {

}
bool List::MoreRemain () {

}
Swimmer* List::Next () {

}

Problem 4 (2 points, 5 minutes)

 Recall the DuplicateElements function from the first midterm exam.
The code appears below.

 void List::DuplicateElements () {
 for (ListNode* ptr=head; ptr!=0;) {
 ListNode* ptr2
 = new ListNode (ptr->info, ptr->next);
 ptr->next = ptr2;
 ptr = ptr->next->next;
 size++;
 }
 }

 Adding this function to the template List class you defined in lab
assignment 10 requires that a line be added to the List class declaration--

 template <class InfoType>
 class List {
 public:
 ...
 void DuplicateElements ();
 ...
 };
and that the function definition itself be modified. Indicate clearly what
changes to the function definition are necessary to add this function to the
template List class from lab assignment 10.

CS 61B, Midterm #3 and solutions, Spring 1996

6

Problem 5 (3 points, 7 minutes)

 Given below is an untemplated version of code from lab assignment 11
that implements a binarv search tree.

 class BinSrchTree {
 public:
 BinSrchTree ();
 void Insert (ItemType);

 private:
 TreeNode* tree; // 0 for an empty tree; points to the root of a
nonempty tree
 TreeNode* InsertHelper (ItemType, TreeNode*);
 };

 void BinSrchTree::Insert (ItemType x) {
 tree = InsertHelper (x, tree);
 }
 TreeNode* BinSrchTree::InsertHelper (ItemType x, TreeNode* treePtr) {
 if (treePtr == 0) {
 return new TreeNode (x);
 } else if (x <= treePtr->info) {
 treePtr->left = InsertHelper (x, treePtr->left);
 return treePtr;
 } else {
 treePtr->right = InsertHelper (x, treePtr->right);
 return treePtr;
 }
 }

Comparisons are highlighted in boldface.

Part a
 Draw the tree that results from inserting the values 1, 3, 4, 2 in
sequence into an initially empty tree.

Part b
 How many total comparisons are made when inserting the values
1, 3, 4, 2 in sequence into an initially empty tree? Show your work for full
credit.

Exam information and SOLUTIONS

 225 students took the exam. Scores ranged from 1 to 20, with a
median of 13 and an average of 12.8. Score totals were rounded up

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 7

where appropriate; e.g. a total score of 13 1/2 was counted as 14. There
were 74 scores between 16 and 20, 80 between 11 and 15, 56 between 6
and 10, and 16 between 1 and 5. (Were you to receive a grade of 16 on all
your midterm exams, 48 on the final exam, plus good grades on
homework and lab, you would receive an A-; similarly, a test grade of
11 may be projected to a B-.)
 There were four versions of the exam, A, B, C, and D. (The
version indicator appears at the bottom of the first page.) Versions A
and C were identical except for the order of the problems. Versions B
and D were also identical except for the order of the problems.

 If you think we made a mistake in grading your exam, describe
the mistake in writing and hand the description with the exam to your
lab t.a. or to Mike Clancy. We will regrade the entire exam.

Solutions and grading standards for versions A and B
Problem 0 (1 point)
 As usual, deductions for this problem were for omitting your
login name on pages or for omitting information on the front page.

Problem 1 (3 points)
 Part a was to determine if specified values, when loaded directly
into an array (i.e. not using the Insert function), formed a heap. In
version A, the values 6, 3, 5, 1, 2, 4 form the heap

 6
 / \
 3 5
 / \ /
1 2 4

In version B, the values 7, 6, 4, 3, 2, 5 do not form a heap; the IsHeap
function detects the non-heapness of the structure
 7
 / \
 6 4
 / \ /
3 2 5

at k=2.

 Part b involved repeated insertion of the values (in the opposite
order from part a). The six insertions result in the following heaps:

Version A
4 4 4 5 5 6
 / / \ / \ / \ / \
 2 2 1 4 1 4 1 4 5
 / / \ / \ /
 2 2 3 2 3 1
Version B

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 8

5 5 5 5 6 7
 / / \ / \ / \ / \
 2 2 3 4 3 5 3 5 6
 / / \ / \ /
 2 2 4 2 4 3

 In part c, you had to identify what arrangements of the array
were correctly processed by the buggy IsHeap from lab assignment 11
(in version A) or incorrectly processed by IsHeap (in version B). The
bug, as you may recall, was that element size of the array (i.e. the
element immediately following the last element of the heap) was
checked in some circumstances. This happened when the rightmost
heap item in the next-to-last level had only one child, which happens
when there are an even number of items in the heap. Thus the answer
in version A was the word "odd", and the answer in version B was
"even".
 Parts a, b, and c were each worth 1 point. Generally, the grading
was all or none, except for clearly careless errors (which lost 1/2 point).
In part b, you received no credit if you merely gave the final heap with
no work shown. You received 1/2 point for the right answer and a few
temporary values, but no intermediate heaps drawn.

Problem 2 (6 points)
 This problem was the same on all versions. A variety of solutions
received full credit; here are representative solutions.

 *A hash table of size depending on the number of subscripts, in
 which collisions are resolved by chaining, and each element of
 the chain is a subscript/value pair. Steps for the evaluation of the
 expression a[k] would be as follows. First k is hashed and the
 corresponding chain searched for the node that has k as a
 subscript. If no such node exists, then k is an illegal subscript.
 Otherwise the associated value is returned. If there are N
 subscripts, a table with N/2 cells should be sufficient. (The Vector
 for the hash table need not be of constant size; it can be resized
 once the length of the list is determined.)

 *A balanced binary search tree, in which each node contains a
 subscript and the corresponding value along with the two tree
 pointers, and in which nodes are ordered by subscript values.
 The expression a[k] is evaluated by searching (in the standard
 way) for the node with subscript value k; if no such node exists,
 k is an illegal subscript, otherwise the associated value is
 returned. One can ensure that the tree is balanced, since all the
 elements are known in advance (code similar to the Reorg
 function from lab assignment 11 could be used to create the tree).

 *An array of subscript/value pairs, sorted by subscript values. As
 with the hash table, the array can be resized to contain exactly as
 many elements as subscripts in the GenVector constructor
 argument list. Evaluating a[k] involves searching for the pair

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 9

 containing k as a subscript using binary search. If such a pair
 exists, the associated value is returned; if not, k is an illegal
 subscript.

Some solutions introduced an extra array that contained only values;
the contents of the hash table, binary search tree, or array were pairs
consisting of a "virtual subscript" (an element of the GenVector
constructor argument list) and an actual subscript into the value
array.
 You needed to state clearly that your structure was storing both
subscrtipts and associated values to receive any more than 1 point on
this problem, no matter how elegant your description was otherwise.
Many students seemed to be confused about the role of the elements of
the GenVector constructor list (perhaps because they didn't understand
that "index" and "subscript" are synonyms?), and described structures
to store and retrieve only the subscripts; these solutions received O
points out of 6.
 Imperfect solutions that clearly described the storage both of
subscripts and of associated values lost points as follows.

*(solutions using hashing) Allocating a constant size hash table
lost 1 point; neglecting to say that collisions were handled via
chaining, implying the need for a perfect hash function, lost
2 points.

*(solutions using a binary search tree) Neglecting to say that the
tree was balanced lost 1 point.

*A solution using linear search lost 3 points.

*An array-based solution involving an array of size equal to the
largest subscript value minus the smallest subscript value + 1
lost 3 points. (It would use an extravagant amount of storage to
represent the GenVector with the two subscripts +/-1,000,000,000.)

Problem 3 (5 points)

 This problem was essentially the same in both versions. The only
difference was in the argument to the InitIterator constructor. (In
version A, the argument is true when we're looking for sharks; in
version B, it's true when we're looking for fish.)

 Again, there were a variety of correct solutions. One version A
solution, based on iterators presented in class and devised in lab
assignment 10, is as follows.

void List::InitIterator (bool sharkIterating) {
 savedPtr = head;
 seekingSharks = sharkIterating;
 Locate ();
}

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 10

bool List::MoreRemain () {
 return savedPtr != 0;
}

Swimmer* List::Next () {
 ListNode* temp = aavedPtr;
 Locate ();
 return temp->info;
}

void List::Locate () {
 if (seekingSharks) {
 while (aavedPtr != O && !savedPtr->info->IsFish ()) {
 savedPtr = savedPtr->next;
 }
 } else {
 while (savedPtr != O && savedPtr->info->IsFish ()) {
 savedPtr = savedPtr->next;
 }
 }
}

The invariant relation between iterator function calls is that savedPtr
points to the node corresponding to the next Swimmer* to return. The
seekingSharks variable is not really necessary, since the Locate
function need merely locate a Swimmer that's the same kind as the one
that was most recently found.

 Some students coded recursive equivalents (or nonequivalents)
for the while loops. Another approach involved having InitIterator
construct the list of fish or sharks to return, then coding MoreRemain
and Next exactly as in lab assignment 10.
 A more complicated solution involved having MoreRemain do the
locating. The invariant for this solution is that savedPtr points
somewhere after the node most recently returned, but not necessarily
at the next node to return; a call to MoreRemain or Next should advance
it appropriately. Note that calls to MoreRemain and Next need not
alternate, the way they do in the examples; one might know for other
reasons that there are at least a certain number of elements in the list,
and make that many calls to Next without any calls to MoreRemain.

 Points were awarded as follows: 2 points for advancing savedPtr
correctly; 1 point for each of the rest of InitIterator, MoreRemain, and
Next. Common bugs were missing the first element of the list or
forgetting to move to the first relevant list item in InitIterator, forgetting
in Next to increment savedPtr before returning, checking beyond
savedPtr in MoreRemain (thus coding "two more remain"), and starting
over at the beginning of the list each time.

Problem 4 (2 points)

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 11

 Version A involved converting the DuplicateElements function
from the first exam to be included in a template List class; version B
involved doing the same for the RemoveAlternateElements function
from the first exam. All references to the List and ListNode types had to
be changed to List<lnfoType> and ListNode<lnfoType>, and the line
"template <class InfoType>" had to be added before each function. The
changes appear in boldface below.

template <class InfoType>
void List<InfoType>::Duplicate elements () {
 for (ListNode<InfoType>* ptr=head; ptr!=0;) {
 ListNode<InfoTyps>* ptr2
 = new ListNodeInfoType> (ptr->info, ptr->next);
 ... // the rest is unchanged

template <class InfoType>
void List<InfoType>::RemoveAlternateElements () {
 if (head != 0 && head->next != 0) {
 for (ListNode<InfoType>* ptr=head;
 ptr!=0 && ptr->next!=0; ptr=ptr->next) {
 ListNode<InfoType>* ptr2 = ptr->next;
 ... // the rest is unchanged

 In each problem, you earned 1 point for making the changes to
ListNode and 1 more point for making the other changes. (A very
common error was to omit the changes to ListNode.) You were expected
to know that struct ListNode was declared in the lists.h code, and to use it
rather than inventing your own type for list nodes. Some students
erroneously changed ListNode to InfoType, losing 1 point.

Problem 5 (3 points)

 This problem involved creating a binary search tree and
counting the comparisons needed to do so. The versions differed only in
the order in which values were to be inserted into the binary search
tree: in version A, it was 1, 3, 4, 2, and in version B, it was 3, 1, 4, 2. The
resulting trees are

version A

 1
 \
 3
 / \
 2 4

version B
 3
 / \
 1 4
 /

CS 61B, Midterm #3 and solutions, Spring 1996

 Exam information and SOLUTIONS 12

 2

 Part a, creating the correct tree, was worth 1 point. Your answer
to part b was evaluated using whatever tree you provided for part a. The
comparison count is shown below.

version A

1 comparison to insert 1
3 comparisons to insert 3
5 comparisons to insert 4
5 comparisons to insert 2

total 14

version B

1 comparison to insert 3
3 comparisons to insert 1
3 comparisons to insert 4
5 comparisons to insert 2

total 12

Part b was worth 2 points. You lost 1/2 point for an addition error and 1
point for each other error, e.g forgetting the last comparison for each
insertion.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

CS 61B, Midterm #3 and solutions, Spring 1996

 Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.13

	CS 61B, Midterm #3 and solutions, Spring 1996

