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UC Berkeley – Computer Science 
CS61B: Data Structures 
 
Midterm #1, Spring 2017 
 
This test has 10 questions worth a total of 80 points, and is to be completed in 110 minutes. The exam is 
closed book, except that you are allowed to use one double sided written cheat sheet (front and back). No 
calculators or other electronic devices are permitted. Give your answers and show your work in the space 
provided. Write the statement out below in the blank provided and sign. You may do this before the 
exam begins.  
 
“I have neither given nor received any assistance in the taking of this exam.” 

 
 

 
 

       Signature: ___________________________ 
 
 

 

# Points # Points 
0 0.5 5 8 
1 4.5 6 12 
2 7 7 0 
3 6 8 8 
4 12 9 8 
  10 14 
  TOTAL 80 

Name: ____Chalisee Fahwajiarns__ 

SID: __________6054756961_______ 

Three-letter Login ID: ____why__ 

Login of Person to Left: __soo__ 

Login of Person to Right: _far__ 

Exam Room: ___A1 Hearst Annex___ 

 
Tips:  

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but 
bear in mind that we may deduct points if your answers are much more complicated than necessary. 

• There are a lot of problems on this exam. Work through the ones with which you are 
comfortable first. Do not get overly captivated by interesting design issues or complex corner 
cases you’re not sure about. 

• Not all information provided in a problem may be useful.  
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled 

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the 
exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is not 
‘does not compile.’ 

• ○ indicates that only one circle should be filled in. 
• □ indicates that more than one box may be filled in. 
• For answers which involve filling in a ○ or □, please fill in the shape completely. 
• When the exam says “write only one statement per line”, a for loop counts as one statement. 
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0. So it begins (0.5 points). Write your name and ID on the front page. Write the exam room. Write the 
IDs of your neighbors. Write the given statement. Sign when you’re done with the exam. Write your login 
in the corner of every page. Enjoy your free half point . 
 
1. Pass By Value (4.5 points). Assume we run the main method. In the blanks next to each print 
statement, write the result of the statement. If the print statement executes multiple times, use multiple 
blanks. For example, if swap(int x, int y) gets used 3 times, use the first blank to list what it 
prints the first time, the second blank to say what it prints the second time, etc. You may not need all 
the blanks. 
 
public static void swap(int x, int y) { 
    int temp = y; 
    y = x; 
    x = temp; 
    System.out.println(x);       ___12___       ____4____       _________ 
} 
public static void swap(int[] x, int[] y) { 
    int[] temp = y; 
    y = x; 
    x = temp; 
    System.out.println(x[0]);    ____4___       _________       _________ 
} 
public static void main(String[] args) { 
    int x1 = 42, y1 = 12; 
    swap(x1, y1); 
    System.out.println(x1);                ___42____ 
    System.out.println(y1);                ___12____ 
    int[] x2 = new int[] {1, 2, 3}; 
    int[] y2 = new int[] {4, 5, 6}; 
    swap(x2, y2); 
    System.out.println(x2[0]);             ____1____ 
    System.out.println(y2[0]);             ____4____ 
    x2 = new int[] {1, 2, 3}; 
    y2 = new int[] {4, 5, 6}; 
    swap(x2[0], y2[0]); 
    System.out.println(x2[0]);             ____1____ 
    System.out.println(y2[0]);             ____4____ 
}  
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2. The Return of Pass By Value (7 points). Fill in the print statement blanks below. 
 
public class IntList5000 { 
    private IntList5000 rest; 
    private int primitive; 
    private Integer reference; 
    public static String slogan; 
 
    public IntList5000(IntList5000 r, int p, Integer r, String s) { 
        rest = r;   primitive = p;    reference = r;    slogan = s; 
    } 
 
    public static void disenturbulate(IntList5000 p) { 
        p.primitive = 5000; 
        p.reference = new Integer(1000); 
        p = new IntList5000(null, 5, 10, "relax"); 
    } 
 
    public void indoctrinate(int b) { 
        b = 0; 
        this.rest.primitive = b; 
    } 
 
    public void integrate(Integer v) { 
        this.reference = v; 
        v = new Integer(10); 
    } 
    public static void main(String[] args) { 
        IntList5000 x = new IntList5000(null, 100, new Integer(7), "live"); 
        IntList5000 y = new IntList5000(x, 9, x.reference, "eat"); 
        System.out.println(y.primitive);                         _____9____ 
        System.out.println(y.reference);                         _____7____    
        IntList5000.disenturbulate(y); 
        System.out.println(y.primitive);                         ___5000___ 
        System.out.println(y.reference);                         ___1000___ 
        y.indoctrinate(100); 
        System.out.println(x.primitive);                         _____0____ 
        x.integrate(new Integer(200)); 
        System.out.println(x.reference);                         ____200___ 
        System.out.println(IntList5000.slogan);                  ___relax__ 
    } 
 
} 
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3. Potpourri (6 Points).  
 
a) Suppose Cat and Dog are subclasses of Animal. All three classes have default (zero-argument) 
constructors. For each answer below, mark whether it causes a compilation error, runtime error, or runs 
successfully. Consider each line independently of all other lines. Fill in bubbles completely. 
 

Compilation Error Runtime Error Runs Fine  
⊗ ○ ○ Cat c = new Animal(); 
○ ○ ⊗ Animal a = new Cat(); 
⊗ ○ ○ Dog d = new Cat(); 
○ ○ ⊗ Animal a = (Cat) new Cat(); 
○ ⊗ ○ Dog d = (Dog) new Animal(); 

 
b) For each of the following, if it is an error that causes the Java compiler javac to abort compilation, fill 
in the square. Fill in squares completely. 
 
⊠Missing semicolon at end of statement. 
□Division by an int variable whose value may be zero. 
⊠Attempting to instantiate a generic array as new T[10], where T is a type parameter. 
□Attempting to access x[i] when array x has length 3 and i is 10. 
⊠Missing return type for a static method. 
 
c) Consider the code below: 

public static void f() { 
    System.out.println(2); 
    System.out.println(3); 
} 
 
public static void main(String[] args) { 
    System.out.println(1); 
    f(); // BREAKPOINT 
    System.out.println(4); 
} 

IntelliJ expert Omid places a breakpoint on the line marked "BREAKPOINT", then runs the main 
method above in "Debug" mode. Upon reaching the breakpoint, Omid clicks "Step Over"  exactly 
once). Write the output of the program (including text printed before the breakpoint), assuming Omid 
does nothing else after clicking “Step Over”. 
_______1______ 
_______2______ 
_______3______ 
______________  
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4. Flirbocon (12 points). Consider the declarations below. Assume that Falcon extends Bird. 
Bird bird = new Falcon(); 
Falcon falcon = (Falcon) bird; 
 
Consider the following possible features for the Bird and Falcon classes. 
Assume that all methods are instance methods (not static!). 
 
F1. The Bird::gulgate(Bird) method exists.1 
F2. The Bird::gulgate(Falcon) method exists. 
F3. The Falcon::gulgate(Bird) method exists. 
F4. The Falcon::gulgate(Falcon) method exists. 
 
a) Suppose we make a call to bird.gulgate(bird); 
Which features are sufficient ALONE for this call to compile? For example if feature F3 or feature F4 
alone will allow this call to compile, fill in the F3 and F4 boxes. 

⊠ ☐ ☐ ☐ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Bird::gulgate(Bird) method. For example, if 
having features F2 and F4 only (and not F1 or F3) would result in Bird::gulgate(Bird) being 
executed, check boxes F2 and F4 only. 

⊠ ☐ ☐ ☐ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.  
⊠ ☐ ⊠ ☐ ☐ 
F1 F2 F3 F4 Impossible 

 
b) Suppose we make a call to falcon.gulgate(falcon); 
Which features are sufficient ALONE for this call to compile? 

⊠ ⊠ ⊠ ⊠ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Bird::gulgate(Bird) method.  
⊠ ☐ ☐ ☐ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Bird::gulgate(Falcon) method.  
☐ ⊠ ☐ ☐ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.  
☐ ☐ ⊠ ☐ ☐ 
F1 F2 F3 F4 Impossible 

Select a set of features such that this call executes the Falcon::gulgate(Falcon) method.  
☐ ☐ ☐ ⊠ ☐ 
F1 F2 F3 F4 Impossible 

                                                        
1 In other words, the Bird class has a method with the signature gulgate(Bird) 

The notation 
Bird::gulgate(Bird) 
specifies a method called 
gulgate with parameter 
of type Bird from the 
Bird class. 
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5. Hoffery (8 Points). Suppose we have the following generic HOF interface: 

public interface UnaryFunction<T> { 
    public T apply(T x); 
} 

A spy is a UnaryFunction that wraps around another UnaryFunction, f. For any input x, it returns the 
result f would return, but it remembers the arguments on which it has been called and can print them out 
on command. For example, if SquareFunction represents a function that squares integers: 

UnaryFunction<Integer> sq = new SquareFunction(); 
System.out.println(sq.apply(4)); // prints “16”, not including quotes 
 
Spy<Integer> spy = new Spy<>(sq); 
System.out.println(spy.apply(5)); // prints "25", not including quotes 
System.out.println(spy.apply(2)); // prints "4" 
System.out.println(spy.apply(3)); // prints "9" 
spy.printArgumentHistory(); // prints "5 2 3 "         non-destructive! 
spy.printArgumentHistory(); // prints "5 2 3 "    and not including quotes 

Complete the Spy class below. You may assume you have access to a working ArrayDeque or 
LinkedListDeque, if necessary. Only write one statement per line. 

public class Spy<T> implements UnaryFunction<T> { 
  ArrayDeque<T> history; 
  UnaryFunction<T> function; 
   
  public Spy(UnaryFunction<T> function) { 
    this.history = new ArrayDeque<>(); 
    this.function = function; 
  } 
   
  @Override 
  public T apply(T x) { 
    history.addLast(x); 
    return function.apply(x); 
    ____________________________________________ 
  } 
   
  public void printArgumentHistory() { 
    history.printDeque(); 
    ____________________________________________ 
    ____________________________________________ 
  } 
}  

interface Deque<Item> 
void addFirst(Item x);             
void addLast(Item x); 
boolean isEmpty();                 
int size(); 
void printDeque();                 
Item get(int index); 
Item removeFirst();                
Item removeLast(); 
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6. Skippify (12 points).  
a) (9 points). Suppose we have the following IntList class, as defined in lecture and lab, with an 
added skippify function. Only write one statement per line. 
 
public class IntList { 
  public int first; 
  public IntList rest; 
 
  public static IntList list(int... args) { ... }  
 
  @Override 
  public boolean equals(Object o) { ... } 
 
  public void skippify() { 
    IntList p = this; 
    int n = 1; 
    while (p != null) { 
        IntList next = p.rest; 
        for (int i = 0; i < n; i += 1) { 
            if (next == null) { 
                return; // NOTE: This should be a break to make more sense. 
            } 
            next = next.rest; 
        } 
        p.rest = next; 
        p = p.rest; 
        n++; 
     } 
  } 
  ... 
}  // Reminder: Only write one statement per line. 
Suppose that we define two IntLists as follows. 
    IntList A = IntList.list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 
    IntList B = IntList.list(9, 8, 7, 6, 5, 4, 3, 2, 1); 
 
Fill in the method skippify such that the result of calling skippify on A and B are as below: 
After calling A.skippify(), A: (1, 3, 6, 10) 
After calling B.skippify(), B: (9, 7, 4) 
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b) (3 points). Write a JUnit test that verifies that skippify is working correctly on the two lists above. 
You may not need all lines. 
 
@Test 
public testSkippify() { 
    IntList A = IntList.list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 
    IntList B = IntList.list(9, 8, 7, 6, 5, 4, 3, 2, 1); 
    IntList expectedA = IntList.list(1, 3, 6, 10); 
    IntList expectedB = IntList.list(9, 7, 4); 
    A.skippify(); 
    B.skippify(); 
    assertEquals(expectedA, A); 
    assertEquals(expectedB, B); 
} 
 
 
7. (0 Points). The present day Panama Canal was originally slated to be built in Nicaragua by a vote of 
308 to 2 in the House of Representatives in 1902. However, intense lobbying efforts by consultant 
William Cromwell and Senator Mark Hanna resulted in the project being moved to Panama. One of their 
key lobbying strategies was to showcase a Nicaraguan postage stamp featuring what? 
 
 
 
The Momotombo Volcano “in magnificent eruption.” 
 
 
 
 
 
 
Warning: Official Grigometh Relaxation Area.  
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8. Dedup (8 points). Fill in the blanks below to correctly implement removeDuplicates. 
 
public class IntList { 
 
    public int first; 
    public IntList rest; 
 
    public IntList (int f, IntList r) { 
        this.first = f; 
        this.rest = r; 
    } 
 
    /** 
     * Given a sorted linked list of items - remove duplicates. 
     * For example given 1 -> 2 -> 2 -> 2 -> 3, 
     * Mutate it to become 1 -> 2 -> 3 (destructively) 
     */ 
    public static void removeDuplicates(IntList p) { 
        if (p == null) { 
            return; 
        } 
        IntList current = p.rest; 
        IntList previous = p; 
        while (current != null) { 
            if (current.first == previous.first) { 
                previous.rest = current.rest; 
            } else { 
                previous = current; 
            } 
            current = current.rest; 
        } 
    } 
} 
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9. Interfaces (8 points). On project 1B, you implemented the Deque interface as ArrayDeque and 
LinkedListDeque. In this problem, you’ll improve your Deque interface by adding a new default 
method. 
 
Your job: Add a default method remove(Item x) that removes all items equal to x. This method should 
return true if anything was removed. It should remove false if nothing was removed. You may not use 
the new keyword. Only write one statement per line. You may not need all the lines. If you need to 
determine that two Items are equal, use the .equals method, i.e. don’t use == to compare Items. 
 
public interface Deque<Item> { 
        void addFirst(Item x);             void addLast(Item x); 
        boolean isEmpty();                 int size(); 
        void printDeque();                 Item get(int index); 
        Item removeFirst();                Item removeLast(); 
    default boolean remove(Item x) { 
         int length = size(); 
         for (int i = 0; i < length; i++) { 
             Item first = removeFirst(); 
             if (!((first != null && first.equals(x)) || first == x)) { 
                 addLast(first); 
             } 
         } 
         return length != size(); 
         ________________________________________________________ 
         ________________________________________________________ 
         ________________________________________________________ 
         ________________________________________________________ 
    } /* Answers using the new keyword will not be given credit. */ 
} 
For example, the test below should pass:  
Deque<Dog> dd = new ArrayDeque<Dog>(); 
dd.addLast(new Dog(“Ljilja”)); 
dd.addLast(new Dog(“Rikhard”)); 
dd.addLast(new Dog(“Spartacus”); 
dd.addLast(new Dog(“Rikhard”)); 
assertEquals(4, dd.size()); 
boolean rikhardRemoved = dd.remove(“Rikhard”); 
assertTrue(rikhardRemoved); 
assertEquals(2, dd.size()); 
 
Reminder: You may not use the new keyword! This is not just an arbitrary restriction, but ensures that 
we don’t use any unnecessary space.  
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10. Grid (14 points). Consider an array implementation of an abstract data type for a grid of numbers, 
defined as follows: 
 
public class ArrayGrid implements Grid { 
    private int[][] nums; 
    private int rows;     /* Number of rows in the Grid. */ 
    private int cols;     /* Number of cols in the Grid. */ 
     
    /** Creates a number grid initially full of zeroes, where r and c > 0. 
      * nums is created with extra space to avoid immediate resizing. */ 
    public ArrayGrid(int r, int c) {         
        nums = new int[r * 2][c * 2]; 
        rows = r;  cols = c; 
    } 
 
    /** Resizes the underlying nums array to be r arrays of length c each. */ 
    private void resize(int r, int c) { /* Code not shown */  } 
 
    /** Gets a copy of the cth column. */ 
    private int[] getColCopy(int c) { /* Code not shown */  } 
 
    @Override 
    /** Prints out the grid. */  
    public void print() { /* Code not shown */ } 
} 
For example, if we call Grid ng = new ArrayGrid(3, 3), then call ng.print(), we’d get: 
    0 0 0  
    0 0 0  
    0 0 0 
 
a) (5 points) Fill in the addRow method below. Assume that row is the same length as cols. Only write 

one statement per line. You may not need all the lines. 
    @Override 
    public void addRow(int[] row) { 
        if (rows >= nums.length) { 
            resize(nums.length * 2, nums[0].length); 
        } 
        System.arraycopy(row, 0, nums[rows], 0, cols); 
        rows++; 
        ______________________________________________ 
        ______________________________________________ 
        ______________________________________________ 
    } 
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b) (9 points) Fill in the rotateColumn method below. Assume that 0 <= c <= cols - 1.  Assume 

that 0 <= x <= rows - 1. You may not need all lines. You may only write one statement per 
line. 

 
    @Override 
    /** Rotate column c (only column c) by x positions downwards. */ 
    public void rotateColumn (int c, int x) { 
        int[] copy = getColCopy(c); 
        for (int i = 0; i < rows; i++) { 
            nums[(i + x) % rows][c] = copy[i]; 
        } 
        _________________________________________________________ 
        _________________________________________________________ 
        _________________________________________________________ 
        _________________________________________________________ 
        _________________________________________________________ 
        _________________________________________________________ 
    } 
 
 
 
 
 
 
 
 
 
 
 
For example, the code on the left yields the outputs on the right: 
 
1: Grid ng = new ArrayGrid(3, 3) 
2: ng.addCol(new int[]{1, 2, 3}); 
3: ng.addRow(new int[]{4, 5, 6, 7}); 
4: ng.print(); 
5: ng.rotateColumn (2, 1); 
6: ng.rotateColumn (3, 3); 
7: ng.print(); 

0 0 0 1  
0 0 0 2  
0 0 0 3  
4 5 6 7 
 
Line 4 output 

0 0 6 2  
0 0 0 3  
0 0 0 7  
4 5 0 1 
 
Line 7 output 

 


