
Optional. Mark along the line to show your feelings Before exam: [____________________].
 on the spectrum between and . After exam: [____________________].

UC Berkeley – Computer Science
CS61B: Data Structures

Midterm #1, Spring 2017

This test has 10 questions worth a total of 80 points, and is to be completed in 110 minutes. The exam is
closed book, except that you are allowed to use one double sided written cheat sheet (front and back). No
calculators or other electronic devices are permitted. Give your answers and show your work in the space
provided. Write the statement out below in the blank provided and sign. You may do this before the
exam begins.

“I have neither given nor received any assistance in the taking of this exam.”

 Signature: ___________________________

Points # Points
0 0.5 5 8
1 4.5 6 12
2 7 7 0
3 6 8 8
4 12 9 8
 10 14
 TOTAL 80

Name: ____Chalisee Fahwajiarns__

SID: __________6054756961_______

Three-letter Login ID: ____why__

Login of Person to Left: __soo__

Login of Person to Right: _far__

Exam Room: ___A1 Hearst Annex___

Tips:

• There may be partial credit for incomplete answers. Write as much of the solution as you can, but
bear in mind that we may deduct points if your answers are much more complicated than necessary.

• There are a lot of problems on this exam. Work through the ones with which you are
comfortable first. Do not get overly captivated by interesting design issues or complex corner
cases you’re not sure about.

• Not all information provided in a problem may be useful.
• Unless otherwise stated, all given code on this exam should compile. All code has been compiled

and executed before printing, but in the unlikely event that we do happen to catch any bugs in the
exam, we’ll announce a fix. Unless we specifically give you the option, the correct answer is not
‘does not compile.’

• ○ indicates that only one circle should be filled in.
• □ indicates that more than one box may be filled in.
• For answers which involve filling in a ○ or □, please fill in the shape completely.
• When the exam says “write only one statement per line”, a for loop counts as one statement.

 UC BERKELEY
Login: __why__

 2

0. So it begins (0.5 points). Write your name and ID on the front page. Write the exam room. Write the
IDs of your neighbors. Write the given statement. Sign when you’re done with the exam. Write your login
in the corner of every page. Enjoy your free half point .

1. Pass By Value (4.5 points). Assume we run the main method. In the blanks next to each print
statement, write the result of the statement. If the print statement executes multiple times, use multiple
blanks. For example, if swap(int x, int y) gets used 3 times, use the first blank to list what it
prints the first time, the second blank to say what it prints the second time, etc. You may not need all
the blanks.

public static void swap(int x, int y) {
 int temp = y;
 y = x;
 x = temp;
 System.out.println(x); ___12___ ____4____ _________
}
public static void swap(int[] x, int[] y) {
 int[] temp = y;
 y = x;
 x = temp;
 System.out.println(x[0]); ____4___ _________ _________
}
public static void main(String[] args) {
 int x1 = 42, y1 = 12;
 swap(x1, y1);
 System.out.println(x1); ___42____
 System.out.println(y1); ___12____
 int[] x2 = new int[] {1, 2, 3};
 int[] y2 = new int[] {4, 5, 6};
 swap(x2, y2);
 System.out.println(x2[0]); ____1____
 System.out.println(y2[0]); ____4____
 x2 = new int[] {1, 2, 3};
 y2 = new int[] {4, 5, 6};
 swap(x2[0], y2[0]);
 System.out.println(x2[0]); ____1____
 System.out.println(y2[0]); ____4____
}

CS61B MIDTERM, SPRING 2017
Login: _______

 3

2. The Return of Pass By Value (7 points). Fill in the print statement blanks below.

public class IntList5000 {
 private IntList5000 rest;
 private int primitive;
 private Integer reference;
 public static String slogan;

 public IntList5000(IntList5000 r, int p, Integer r, String s) {
 rest = r; primitive = p; reference = r; slogan = s;
 }

 public static void disenturbulate(IntList5000 p) {
 p.primitive = 5000;
 p.reference = new Integer(1000);
 p = new IntList5000(null, 5, 10, "relax");
 }

 public void indoctrinate(int b) {
 b = 0;
 this.rest.primitive = b;
 }

 public void integrate(Integer v) {
 this.reference = v;
 v = new Integer(10);
 }
 public static void main(String[] args) {
 IntList5000 x = new IntList5000(null, 100, new Integer(7), "live");
 IntList5000 y = new IntList5000(x, 9, x.reference, "eat");
 System.out.println(y.primitive); _____9____
 System.out.println(y.reference); _____7____
 IntList5000.disenturbulate(y);
 System.out.println(y.primitive); ___5000___
 System.out.println(y.reference); ___1000___
 y.indoctrinate(100);
 System.out.println(x.primitive); _____0____
 x.integrate(new Integer(200));
 System.out.println(x.reference); ____200___
 System.out.println(IntList5000.slogan); ___relax__
 }

}

 UC BERKELEY
Login: __why__

 4

3. Potpourri (6 Points).

a) Suppose Cat and Dog are subclasses of Animal. All three classes have default (zero-argument)
constructors. For each answer below, mark whether it causes a compilation error, runtime error, or runs
successfully. Consider each line independently of all other lines. Fill in bubbles completely.

Compilation Error Runtime Error Runs Fine
⊗ ○ ○ Cat c = new Animal();
○ ○ ⊗ Animal a = new Cat();
⊗ ○ ○ Dog d = new Cat();
○ ○ ⊗ Animal a = (Cat) new Cat();
○ ⊗ ○ Dog d = (Dog) new Animal();

b) For each of the following, if it is an error that causes the Java compiler javac to abort compilation, fill
in the square. Fill in squares completely.

⊠Missing semicolon at end of statement.
□Division by an int variable whose value may be zero.
⊠Attempting to instantiate a generic array as new T[10], where T is a type parameter.
□Attempting to access x[i] when array x has length 3 and i is 10.
⊠Missing return type for a static method.

c) Consider the code below:

public static void f() {
 System.out.println(2);
 System.out.println(3);
}

public static void main(String[] args) {
 System.out.println(1);
 f(); // BREAKPOINT
 System.out.println(4);
}

IntelliJ expert Omid places a breakpoint on the line marked "BREAKPOINT", then runs the main
method above in "Debug" mode. Upon reaching the breakpoint, Omid clicks "Step Over" exactly
once). Write the output of the program (including text printed before the breakpoint), assuming Omid
does nothing else after clicking “Step Over”.
_______1______
_______2______
_______3______

CS61B MIDTERM, SPRING 2017
Login: _______

 5

4. Flirbocon (12 points). Consider the declarations below. Assume that Falcon extends Bird.
Bird bird = new Falcon();
Falcon falcon = (Falcon) bird;

Consider the following possible features for the Bird and Falcon classes.
Assume that all methods are instance methods (not static!).

F1. The Bird::gulgate(Bird) method exists.1
F2. The Bird::gulgate(Falcon) method exists.
F3. The Falcon::gulgate(Bird) method exists.
F4. The Falcon::gulgate(Falcon) method exists.

a) Suppose we make a call to bird.gulgate(bird);
Which features are sufficient ALONE for this call to compile? For example if feature F3 or feature F4
alone will allow this call to compile, fill in the F3 and F4 boxes.

⊠ ☐ ☐ ☐ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Bird::gulgate(Bird) method. For example, if
having features F2 and F4 only (and not F1 or F3) would result in Bird::gulgate(Bird) being
executed, check boxes F2 and F4 only.

⊠ ☐ ☐ ☐ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.
⊠ ☐ ⊠ ☐ ☐
F1 F2 F3 F4 Impossible

b) Suppose we make a call to falcon.gulgate(falcon);
Which features are sufficient ALONE for this call to compile?

⊠ ⊠ ⊠ ⊠ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Bird::gulgate(Bird) method.
⊠ ☐ ☐ ☐ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Bird::gulgate(Falcon) method.
☐ ⊠ ☐ ☐ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Falcon::gulgate(Bird) method.
☐ ☐ ⊠ ☐ ☐
F1 F2 F3 F4 Impossible

Select a set of features such that this call executes the Falcon::gulgate(Falcon) method.
☐ ☐ ☐ ⊠ ☐
F1 F2 F3 F4 Impossible

1 In other words, the Bird class has a method with the signature gulgate(Bird)

The notation
Bird::gulgate(Bird)
specifies a method called
gulgate with parameter
of type Bird from the
Bird class.

 UC BERKELEY
Login: __why__

 6

5. Hoffery (8 Points). Suppose we have the following generic HOF interface:

public interface UnaryFunction<T> {
 public T apply(T x);
}

A spy is a UnaryFunction that wraps around another UnaryFunction, f. For any input x, it returns the
result f would return, but it remembers the arguments on which it has been called and can print them out
on command. For example, if SquareFunction represents a function that squares integers:

UnaryFunction<Integer> sq = new SquareFunction();
System.out.println(sq.apply(4)); // prints “16”, not including quotes

Spy<Integer> spy = new Spy<>(sq);
System.out.println(spy.apply(5)); // prints "25", not including quotes
System.out.println(spy.apply(2)); // prints "4"
System.out.println(spy.apply(3)); // prints "9"
spy.printArgumentHistory(); // prints "5 2 3 " non-destructive!
spy.printArgumentHistory(); // prints "5 2 3 " and not including quotes

Complete the Spy class below. You may assume you have access to a working ArrayDeque or
LinkedListDeque, if necessary. Only write one statement per line.

public class Spy<T> implements UnaryFunction<T> {
 ArrayDeque<T> history;
 UnaryFunction<T> function;

 public Spy(UnaryFunction<T> function) {
 this.history = new ArrayDeque<>();
 this.function = function;
 }

 @Override
 public T apply(T x) {
 history.addLast(x);
 return function.apply(x);
 __
 }

 public void printArgumentHistory() {
 history.printDeque();
 __
 __
 }
}

interface Deque<Item>
void addFirst(Item x);
void addLast(Item x);
boolean isEmpty();
int size();
void printDeque();
Item get(int index);
Item removeFirst();
Item removeLast();

CS61B MIDTERM, SPRING 2017
Login: _______

 7

6. Skippify (12 points).
a) (9 points). Suppose we have the following IntList class, as defined in lecture and lab, with an
added skippify function. Only write one statement per line.

public class IntList {
 public int first;
 public IntList rest;

 public static IntList list(int... args) { ... }

 @Override
 public boolean equals(Object o) { ... }

 public void skippify() {
 IntList p = this;
 int n = 1;
 while (p != null) {
 IntList next = p.rest;
 for (int i = 0; i < n; i += 1) {
 if (next == null) {
 return; // NOTE: This should be a break to make more sense.
 }
 next = next.rest;
 }
 p.rest = next;
 p = p.rest;
 n++;
 }
 }
 ...
} // Reminder: Only write one statement per line.
Suppose that we define two IntLists as follows.
 IntList A = IntList.list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 IntList B = IntList.list(9, 8, 7, 6, 5, 4, 3, 2, 1);

Fill in the method skippify such that the result of calling skippify on A and B are as below:
After calling A.skippify(), A: (1, 3, 6, 10)
After calling B.skippify(), B: (9, 7, 4)

 UC BERKELEY
Login: __why__

 8

b) (3 points). Write a JUnit test that verifies that skippify is working correctly on the two lists above.
You may not need all lines.

@Test
public testSkippify() {
 IntList A = IntList.list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 IntList B = IntList.list(9, 8, 7, 6, 5, 4, 3, 2, 1);
 IntList expectedA = IntList.list(1, 3, 6, 10);
 IntList expectedB = IntList.list(9, 7, 4);
 A.skippify();
 B.skippify();
 assertEquals(expectedA, A);
 assertEquals(expectedB, B);
}

7. (0 Points). The present day Panama Canal was originally slated to be built in Nicaragua by a vote of
308 to 2 in the House of Representatives in 1902. However, intense lobbying efforts by consultant
William Cromwell and Senator Mark Hanna resulted in the project being moved to Panama. One of their
key lobbying strategies was to showcase a Nicaraguan postage stamp featuring what?

The Momotombo Volcano “in magnificent eruption.”

Warning: Official Grigometh Relaxation Area.

CS61B MIDTERM, SPRING 2017
Login: _______

 9

8. Dedup (8 points). Fill in the blanks below to correctly implement removeDuplicates.

public class IntList {

 public int first;
 public IntList rest;

 public IntList (int f, IntList r) {
 this.first = f;
 this.rest = r;
 }

 /**
 * Given a sorted linked list of items - remove duplicates.
 * For example given 1 -> 2 -> 2 -> 2 -> 3,
 * Mutate it to become 1 -> 2 -> 3 (destructively)
 */
 public static void removeDuplicates(IntList p) {
 if (p == null) {
 return;
 }
 IntList current = p.rest;
 IntList previous = p;
 while (current != null) {
 if (current.first == previous.first) {
 previous.rest = current.rest;
 } else {
 previous = current;
 }
 current = current.rest;
 }
 }
}

 UC BERKELEY
Login: __why__

 10

9. Interfaces (8 points). On project 1B, you implemented the Deque interface as ArrayDeque and
LinkedListDeque. In this problem, you’ll improve your Deque interface by adding a new default
method.

Your job: Add a default method remove(Item x) that removes all items equal to x. This method should
return true if anything was removed. It should remove false if nothing was removed. You may not use
the new keyword. Only write one statement per line. You may not need all the lines. If you need to
determine that two Items are equal, use the .equals method, i.e. don’t use == to compare Items.

public interface Deque<Item> {
 void addFirst(Item x); void addLast(Item x);
 boolean isEmpty(); int size();
 void printDeque(); Item get(int index);
 Item removeFirst(); Item removeLast();
 default boolean remove(Item x) {
 int length = size();
 for (int i = 0; i < length; i++) {
 Item first = removeFirst();
 if (!((first != null && first.equals(x)) || first == x)) {
 addLast(first);
 }
 }
 return length != size();
 __
 __
 __
 __
 } /* Answers using the new keyword will not be given credit. */
}
For example, the test below should pass:
Deque<Dog> dd = new ArrayDeque<Dog>();
dd.addLast(new Dog(“Ljilja”));
dd.addLast(new Dog(“Rikhard”));
dd.addLast(new Dog(“Spartacus”);
dd.addLast(new Dog(“Rikhard”));
assertEquals(4, dd.size());
boolean rikhardRemoved = dd.remove(“Rikhard”);
assertTrue(rikhardRemoved);
assertEquals(2, dd.size());

Reminder: You may not use the new keyword! This is not just an arbitrary restriction, but ensures that
we don’t use any unnecessary space.

CS61B MIDTERM, SPRING 2017
Login: _______

 11

10. Grid (14 points). Consider an array implementation of an abstract data type for a grid of numbers,
defined as follows:

public class ArrayGrid implements Grid {
 private int[][] nums;
 private int rows; /* Number of rows in the Grid. */
 private int cols; /* Number of cols in the Grid. */

 /** Creates a number grid initially full of zeroes, where r and c > 0.
 * nums is created with extra space to avoid immediate resizing. */
 public ArrayGrid(int r, int c) {
 nums = new int[r * 2][c * 2];
 rows = r; cols = c;
 }

 /** Resizes the underlying nums array to be r arrays of length c each. */
 private void resize(int r, int c) { /* Code not shown */ }

 /** Gets a copy of the cth column. */
 private int[] getColCopy(int c) { /* Code not shown */ }

 @Override
 /** Prints out the grid. */
 public void print() { /* Code not shown */ }
}
For example, if we call Grid ng = new ArrayGrid(3, 3), then call ng.print(), we’d get:
 0 0 0
 0 0 0
 0 0 0

a) (5 points) Fill in the addRow method below. Assume that row is the same length as cols. Only write

one statement per line. You may not need all the lines.
 @Override
 public void addRow(int[] row) {
 if (rows >= nums.length) {
 resize(nums.length * 2, nums[0].length);
 }
 System.arraycopy(row, 0, nums[rows], 0, cols);
 rows++;
 __
 __
 __
 }

 UC BERKELEY
Login: __why__

 12

b) (9 points) Fill in the rotateColumn method below. Assume that 0 <= c <= cols - 1. Assume

that 0 <= x <= rows - 1. You may not need all lines. You may only write one statement per
line.

 @Override
 /** Rotate column c (only column c) by x positions downwards. */
 public void rotateColumn (int c, int x) {
 int[] copy = getColCopy(c);
 for (int i = 0; i < rows; i++) {
 nums[(i + x) % rows][c] = copy[i];
 }

 }

For example, the code on the left yields the outputs on the right:

1: Grid ng = new ArrayGrid(3, 3)
2: ng.addCol(new int[]{1, 2, 3});
3: ng.addRow(new int[]{4, 5, 6, 7});
4: ng.print();
5: ng.rotateColumn (2, 1);
6: ng.rotateColumn (3, 3);
7: ng.print();

0 0 0 1
0 0 0 2
0 0 0 3
4 5 6 7

Line 4 output

0 0 6 2
0 0 0 3
0 0 0 7
4 5 0 1

Line 7 output

