UC Berkeley — Computer Science
CS61B: Data Structures

Final, Spring 2016

This test has 13 questions worth a total of 100 points. The exam is closed book, except that you are allowed to use
three pages (both front and back, for 6 total sides) as a written cheat sheet. No calculators or other electronic
devices are permitted. Give your answers and show your work in the space provided. Write the statement out
below in the blank provided and sign. You may do this before the exam begins. Any plagiarism, no matter
how minor, will result in an F.

“I have neither given nor received any assistance in the taking of this exam.”

Signature:
Name: Your 3-Letter Login:
SID: Name of person to left: No ID:
Exam Room: Name of person to right: No ID:
Primary TA:
Tips:

e There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in
mind that we may deduct points if your answers are much more complicated than necessary.

e There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do

not get overly captivated by interesting design issues or complex corner cases you’re not sure about.
Not all information provided in a problem may be useful.
Unless otherwise stated, all given code on this exam should compile. All code has been compiled and
executed before printing, but in the unlikely event that we do happen to catch any bugs during the exam,
we’ll announce a fix. Unless we specifically give you the option, the correct answer is not ‘does not
compile.’

e The exam roughly increases in difficult as you approach the end.

Problem | 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Points 0.5 8 8 6 12 7.5 4 5 0 10 6 10 13 10

Optional. Mark along the line to show your feelings Before exam: [:(©].
on the spectrum between :(and ©. After exam: [:(o]

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

0. So It Begins III (0.5 points). Write your name and ID on the front page. Circle the exam room. Write the
names of your neighbors. If a neighbor is missing their ID, make sure to mark No ID in the appropriate blank.
Write and sign the given statement. Write your login in the corner of every page.

1. Giraphage (8 points). For your convenience, we have provided 3 copies of the graph for parts a through c.

a. (2 pts) For the graph above, give the vertices in the order they’d be visited by depth first search starting from
vertex A, assuming that we always visit alphabetically earlier vertices first if there are multiple valid choices. You
may not need all blanks. The alphabet is ABCDEFG.

A

b. (2 pts) For the graph above, give the vertices in the order they’d be visited by breadth first search starting from
vertex D, assuming that we always visit alphabetically earlier vertices first if there are multiple valid choices. You
may not need all blanks.

D

c. (2 pts) For the graph above, give the vertices in the order they’d be visited by Dijkstra’s algorithm starting from
vertex A, assuming that we always visit alphabetically earlier vertices first if there are multiple valid choices.
Assume that “visiting a vertex v’ means “relaxing all of the edges out of v”’. You may not need all blanks.

A

d. Suppose we are trying to find the shortest path from A to G. Give an example of a heuristic function for which
A* returns the wrong shortest paths tree. Specify your heuristic function by circling one number for h(E).

h(A) = ©
h(B) = 3
h(c) = 2
h(D) = 2
h(Ey = -4 1 2 5 8 14
h(F) = 1
h(G) = o

8	14

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

2. Sorting (8 points). a) (6 pts) Below, the leftmost column is an array of strings to be sorted. The column to the
far right gives the strings in sorted order. Each of the remaining columns gives the contents of the array during
some intermediate step of one of the algorithms listed below. Match each column with its corresponding
algorithm. You will use each answer once. Write your answer in the blanks provided.

7777 1979 1979 7777 2001 1234 1234

2001 1234 2001 7777 8009 2001 1979

3015 1984 2015 4444 3015 3015 1981

2015 1981 2048 2015 2015 2015 1984

2048 2001 3015 7450 2016 2048 2001

8009 2015 4444 3015 2048 1981 2015

1979 2048 4500 2016 9150 1979 2016

7777 2016 7450 2001 1234 2016 2048

9150 3015 7777 1979 4444 1984 3015

4500 4500 7777 4500 7450 4500 4444

7450 4444 8009 2048 4500 7450 4500

4444 7777 9150 1981 7777 4444 7450

1234 7777 1234 1234 7777 7777 7777

1984 7450 1984 1984 1979 9150 7777

2016 8009 2016 8009 1981 7777 8009

1981 9150 1981 9150 1984 8009 9150

1: Unsorted, 2: Insertion, 3: Quick, 4: Heap, 5: LSD, 6: MSD, 7: Sorted

Notes:
e Quicksort is non-random and uses leftmost item as a pivot. The pivoting strategy is the Hoare two-pivot
strategy, discussed in class.
e Insertion, Heapsort, LSD Radix Sort, and MSD Radix Sort as described in class.

b) (1 pt) One way to sort N items is to insert them randomly into a left leaning red black tree, and then traverse
the LLRB. Which traversal should we use in order to print out the keys in sorted order? Circle one:

Preorder Inorder Postorder Reverse-Preorder Reverse-Postorder

Inorder

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

c) (1 pt) What is the worst case runtime of the sort described in part b? Give your answer in
Big Theta notation in terms of N. Put your answer in the given blank.

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:
3. Reverse Engineering (6 Points).
a. (4 pts) Consider the following unsorted array, and the array after an unknown number of iterations of selection
sort as discussed in class (where we sort by identifying the minimum item and moving it to the front by

swapping). Assume no two elements are equal.

Unsorted:

KIVIT+ IR ID|O|@|cc

After ? Iterations of Selection Sort:

Oloo|+ IR (IKIN DV

For each relation, circle <, >, or ? if there is insufficient information to determine the relation between the two

objects. For example, if you believe that S is greater than O , you’d circle the > on the first line.

S O

S o)

S, \V4
o0 \V4

b. (2 pts) Suppose we have a graph G. All of G’s topological sorts are listed below. In the space to the right, fill
in the adjacency list for G. There may be more than one right answer. Don’t worry about the exact formatting
for your answer. As long as it is an adjacency list and it is easy to understand, we will accept your answer. Graph
drawings will be given only partial credit -- please fill out the adjacency list!

1234567
1234657
1324567

1324657
Draw graph here:

Nouvu b wN R
FY VY Yoy

Draw graph here:

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

4. Facts (12 Points)

a. (7 pts) FSacginorstt. You will be given an answer bank, each item of which may be used multiple times.

You may not need to use every answer.

Word Bank

A. QuickSort (non-random, in-place using Hoare partitioning, and choose the leftmost item as the pivot)
B. MergeSort

C. Selection Sort

D. Insertion Sort

E. LSD Sort

F. MSD Sort

G. HeapSort

N. (None of the above)

Questions

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N. All answers
refer to the entire sorting process. not a single step of the sorting process. For each incorrect letter (either

additional or missing), you will lose half credit for that blank.

bounded by Q(N log N) lower bound.

is a comparison sort and has worst case runtime that is asymptotically better than Quicksort's
worst case runtime.

in the worst case, performs @(N) pairwise swaps of elements.

comparison based sort, and never compares the same two elements twice.

runs in best case O(log N) time for certain inputs.

b) Tree Facts (5 pts). Answer 'True' or 'False' for each of the statements below.
Inserting a single item into a "bushy" (balanced) BST with N items takes ®(log N) time in all cases.

Inserting a single item into a heap with N items takes ®(log N) time in all cases.

The height of a BST with N items is O(N). (Note the Big O).

Suppose X is a valid BST containing integers. If we square all values in X, the result is always a BST.
All valid left leaning red black trees are valid BSTs.

All valid weighted quick union trees are valid BSTs.

The parent of the second largest item in a max heap is always the root.

The parent of the parent of the third largest item in a max heap is always the root.

The height of a perfectly balanced quadtree with N items is asymptotically the same as the height

of'a 2-3 tree with N items.

Finding all matching tiles in getMapRaster using a quadtree takes @(log N) time in all cases, where N is
the number of png files.

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

write

5. (7.5 pts) Graph Algorithms. For each statement below, eirete either TRUE or FALSE. If your answer is
FALSE, draw a counterexample graph in the given box, and if applicable, provide a starting vertex. Please
use unique edge weights for any weighted graphs. If your answer is true, don’t do anything in the box/blank. Any
counterexamples should have S vertices or less. Keep in mind these are only worth 1.5 points each!

: The last edge added to the MST by Prim’s algorithm is always the highest weight edge in the MST.

Starting vertex:

: The largest edge in a graph is never part of a SPT.

Starting vertex:

On a graph of 4 or more nodes, DFS and BFS never visit vertices in the same order when run from the

same start vertex.

Starting vertex:

Dijkstra’s algorithm always finds the shortest path in a directed acyclic graph, even if there are negative

edges:

Starting vertex:

Laura Brandt

write

Christine Zhou

Christine Zhou

Christine Zhou

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

In any undirected graph, the shortests paths tree from any vertex always has total weight less than or
equal to the weight of the MST for that graph.

Starting vertex: -

6. Advanced Hash Party (4 points).

(4 pts) There are other ways to resize a hash table than the way we discussed in lecture. For each scheme below,

give the amortized best and worst case runtime for a single insertion operation in ® notation in terms of N, the

number of items in the hash table. If the operation given could result in an infinite runtime, write “infinity” or oo

inside the big Theta. Assume the hashCode function takes constant time. By the “best case”, we mean a set of

items that are spread out nicely by their hashCode, and by the “worst case”, we mean a set of items that have the

worst possible collisions by their hashCode. Define L to be the average number of items in each bucket. Assume
resizing takes linear time.

Best Case Worst Case Scheme
O) | O Quadruple # of buckets when L > 1.
?() | O Double # of buckets when L > 1/100.
?() | O Increases # of buckets by 10 when L > 1
?() | O(Doubles # of buckets until no bucket has more than 5 elements in it. This
may result in multiple doublings!

Enjoy this space.

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:
7. Asymptotics (5 points). For parts a, b, and ¢, assume that f runs in ®(N) time (in all cases), g runs in @(N?)

time (in all cases), and h runs in O(N?) time (in all cases). Assume that each function returns an array of the same
length as its input. Note, the runtime for h is given in O notation, not ® notation.

a) (1 pt) Give the runtime to complete the doStuffl method in ® notation if possible, or O notation
otherwise. Your answer should be simple, with no unnecessary leading constants or unnecessary
summations. Write your answer in this blank:

public static int[] doStuffi(int[] x) {
int N = x.length;
int[] effedX = f(x);

int[] newArray = new int[N];
for (int 1 =0; 1 < N; i +=1) {
newArray[i] = effedX[i] * 2;

int[] result = g(newArray);
return result;

b) (3 pts) Give the runtimes for each line of code shown in ® notation if possible, or O notation otherwise. Your
answer should be simple, with no unnecessary leading constants or unnecessary summations.

public static void doStuff2(int[] x) {
int N = x.length;

int[] fx = f(x);

int[] gfx = g(f(x));
int[] hgfx = h(g(f(x)));
int[] hfx = h(f(x));
int[] ddx = f(f(x));

c¢) (1 pt) Suppose we have an input array x. Will f(x) always take fewer seconds to execute than g(x), assuming
we run them on the same computer? Briefly explain why or why not in the blank below.

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

8. (0 points) Lloyd’s of London predicted in 2013 that this 1859 event, if it occurred today, would cause as much
as 2.6 trillion dollars of damage to the U.S. economy. What event were they referring to?

10

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:
9. Heaps and JUnit (10 points).
Write a JUnit test to check a method public void minheapify(int[] arr) {...} thatis supposed to
perform bottom-up min-heap heapification. This means ensuring that the array is actually a heap, and also that the
array still has all the same items. Our tests will verify only correctness, not runtime. Assume there will be no
duplicates (which may make it easier to test that the array still contains the same inputs after heapification).
e Hint: We’re not leaving index 0 blank, so the left child of k is 2k + 1, and the right child is 2k + 2.
e Hint 2: Feel free to use assertEquals(x, y), assertTrue(b), assertArrayEquals(x, y), etc.
e Hint 3: If you don’t remember the exact syntax but your meaning is clear, penalties will be minimal.
@Test
public static void testHeapify() {
int[] arr = generateRandomIntArray();
int[] original = new int[arr.length]; // copy of array before being
heapified
System.arraycopy(arr, 0, original, @, arr.length);
minheapify(arr);
// Check the integrity of the result using one or two calls to helper
methods
testIsAHeap(arr);
testHaveSameItems(original, arr);

}

private static void testIsAHeap(int[] arr) {

} //You may not need all lines for these methods. Must include at least one

assert!

private static void testHaveSameItems(int[] original, int[] arr) {

11

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

12

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

10. Fancy Asymptotics (6 points)
Ben Bitdiddle has created a generalized sorting algorithm called BitdiddleSort. The pseudocode is provided:

procedure BitdiddleSort(array):

if the array has length 1:
return the array

else:
divide the array into two equal halves, halfl and half2
sort halfl using algorithm A
sort half2 using algorithm B
merge the two sorted halves in O(N) time and return the merged result

Let N be the length of the input array. Assume the array consists only of integers between 1 and 9.
a) Suppose algorithm A is a comparison sort and algorithm B is counting sort. In big-omega notation, give the

tightest possible lower bound on the runtime of BitdiddleSort as a function of N.
Hint (that you might not actually need): log(ab) = log(a) + log(b).

b) Suppose algorithm A is counting sort and algorithm B is quicksort. In big-O notation, give the tightest possible
upper bound on the runtime of BitdiddleSort as a function of N.

c¢) Suppose algorithm A is quicksort and algorithm B is BitdiddleSort. In big-O notation, give the tightest possible
upper bound on the runtime of BitdiddleSort as a function of N.

d) Suppose algorithm A and B are both BitdiddleSort. In big-theta notation, give the runtime of
BitdiddleSort as a function of N.

13

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

11. Dynamic Programming (10 points): Warning, the exam from here on out is pretty hard!

Letters in the alphabet that are next to each other are said to be neighborly. For example, 'c' and 'd"' are
neighborly, and soare 'b' and 'a'. Note that 'a' and 'z" are not neighborly. Characters are also not
neighborly with respect to themselves: 'a’ and "a’' are not neighborly.

Given a non-empty array of lowercase characters ('a’' through 'z "), find the length of the longest alphabetically
neighborly subsequence (LANS) of the array. Remember that subsequences are not necessarily contiguous, and
that neighborly can be either increasing or decreasing. Examples (read carefully!):

*Forinput ['a', 'b', 'c'],the answer is 3, since the entire array is the LANS.

*Forinput ['a', 'a', 'c', 'a', 'd'],the answer is 2, since the LANS is the subsequence ['c',
d'].

*Forinput ['a', 'd', 'c', 'd'],the answer is 3, since the LANS is the subsequence ['d', 'c',
d'].

*Forinput ['a', 'z', 'a', 'z'],theanswer is I, since the LANS can be any character as a standalone
subsequence, e.g. ["a'].

Your algorithm must run in O(N) expected time, where N is the length of the input. Solutions that do not
run in O(N) expected time will receive zero points. It is OK to assume constant time HashMap operations.
You may assume you have access to the following 3 methods, which take constant, linear, and constant time:
/* returns hm.get(key) if hm.containsKey(key), defaultValue otherwise */
@® public static <K, V> V get(HashMap<K, V> hm, K key, V defaultValue)
/* returns the largest value in the HashMap hm (linear time) */
@® public static <K, V> V maxValue(HashMap<K, V> hm)
e Also, don’t forget about Math.max(int x, int y) andMath.min(int x, int y)

Hint: You can use the subtraction operator - to find the distance between two char values without casting to int.

For example: 'b' - 'a' evaluates to 1. Similarly: 'c' - 1 evaluatesto 'b".

public static int llans(char[] input) {
HashMap<Character, Integer> cache = new HashMap<Character, Integer>();
cache.put(input[0], 1);
for (int i = 1; i < input.length; i += 1) {

}

return

14

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

12. Calling Collect: Tries and Recursive Tree Programming (13 points).

a. (2 pts) Suppose we implement a set of integers by using a Trie that stores positive base 10 numbers
digit-by-digit (so R = 10). Draw the R-way Trie (not TST!) that results from inserting the numbers 1, 100,
10110, 1123, 1134, 2101, 355, 21.Inside each node, draw the value of that node. We have drawn the
root for you, which has a dummy value of 0. Do not draw null links. Put a square box around all nodes
corresponding to keys that exist. If two nodes have the same parent, the one that is less should go to the left (e.g.
if the root has a child node with a 1, and another with a 2, the node with a 1 should be to the left). Like strings,

insert most significant digits first.
root

b. (1 pt) Suppose we have the TrieIntegerSet definition given below.
public class TrieIntegerSet {
private Node root = new Node(9); // root of trie

// R-way trie node
private class Node implements Comparable<Node> {
private Set<Node> children = new TreeSet<Node>();

private int dig; // this digit
private boolean exists; // true if this item exists
public Node(int x) { dig = x; }

public int compareTo(Node x) { return this.dig - x.dig; }

collect(Node z, List<Integer> matches, int topDigits) is a method which finds all keys in the
subtrie rooted at z, appends topDigits to each key, and adds the result to matches. Example: collect(z1,
matches, 99) would add [991, 99100, 9910110, 991123, 991134] to matches, assuming that z1 is
the 1 child of the root. There is no specific required ordering for the keys added by a call to collect.

Give the results of calling collect(z10, matches, 1), assuming z10 is the 0 child of the 1 child of the
root. Use exactly the two blanks provided below. Either order is fine. Hint: Unlike our example above with
topDigits = 99, your answer should exactly match two keys in the trie from part a! This problem should be

easy and is setting you up for part c.

15

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

c. (5 points) Fill in the private collect method so that it behaves as in part b. Note that if topDigits is 0 you
should not prepend a zero (in fact, it’s impossible), i.e. collect(z10, matches, 0) would add [0, 110].
Assume that collect is never called on the root, so you don’t need to worry about any weird edge cases. Note
that this method is a method of TrieIntegerSet, not Node.

/* Collects a list of all keys in the subtrie rooted at x, assuming that
* they are all prefixed by topDigits. Assume never called on root. */
private void collect(Node x, List<Integer> matches, int topDigits) {

if (x == null) { }
if (x.exists == true) { }
for () {
)s
5
}
} // You may not need all lines. This is a time consuming problem.

d. (5 points) Fill in the private method below such that public findRepeaters returns a list of all numbers in
a TrieIntegerSet that have any consecutive repeated digits. For example, for the Trie from part a, this method
would return [100, 10110, 1123, 1134, 355]. It would not return 2101 since the 1s are not consecutive.
You may use collect from part c even if you didn’t finish it or your answer is incorrect. You do not need to use
the modulus operator % for this problem. Order doesn’t matter. This method also belongs to TrieIntegerSet.
public List<Integer> findRepeaters() {

List<Integer> matches = new ArrayList<Integer>();

findRepeaters(root, matches, 0);

return matches;

/** Finds all keys in the subtrie rooted in x that have at least one

* pair of repeated digits, assuming they are all prefixed by topDigits. */
private void findRepeaters(Node x, List<Integer> matches, int topDigits) {

if (x == null) { }

for (Node child : x.children) {

} // You may not need all lines. This is a time consuming problem.

16

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

13. A (Fond?) Farewell to 61B (10 points). In your life after 61B, you'll often need to use one data structure to
implement another. In this problem, you’ll build a FIFO (first-in first-out) queue of type MagicStringQueue
which has two operations that are just like a regular queue, namely enqueue and dequeue. For example, if we
made the following calls into an initially empty MagicStringQueue called mq:

@® ng.enqueue(“giraffe”), mq.enqueue(“zebra”), mq.enqueue(“alf”)

e System.out.println(mq.dequeue())

Then the print statement would print “giraffe” since it was at the front of the queue. Instead of using an array
or linked list to build the queue, you must use a MagicBag<K>, which has the following operations:
public void add(K key): adds an item of type K to the MagicBag, or replaces
it if there is already an item that .equals key
public K remove(K key): removes the item that .equals key (if it exists)
and returns that item in the bag, or null otherwise

Describe how you’d build a MagicStringQueue using only a MagicBag and a constant amount of additional
memory. Solutions that use more memory will be given zero points.}

Notes: You may assume that enqueue() is called at most 1 million times. Your MagicStringQueue may only
use a constant amount of memory, except for a single MagicBag which may use linear memory. It is OK to
create a single helper class (see part b of this problem). Strings are immutable in Java.

a) List the instance variables of your MagicStringQueue.

b) Very briefly describe your helper class (if needed). List its instance variables as well as any methods. Briefly
describe how any such methods work. Include any default methods that you @Override.

¢) Describe how your MagicStringQueue’s enqueue and dequeue operations work in terms of its instance
variables (including any calls to MagicBag’s methods). You may use pseudocode if you’d like. Do not write Java
code. Don’t worry about handling dequeueing from an empty queue.

17

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

18

UC BERKELEY, CS61B FINAL, SPRING 2016
Login:

19

