

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

1

Exam information

345 students took the exam. Scores ranged from 3 to 25, with a median of 19 and an
average of 18.1. There were 176 scores between 19 and 25, 125 between 12.5 and
18.5, 42 between 6 and 12, and 2 less than 6. (Were you to receive 75% of the points
on all your exams, plus good grades on homework and lab, you would receive an A–;
similarly, a test grade of 50% may be projected to a B–.)

There were two versions of the exam, A, and B. (The version indicator appears at the
bottom of the first page.) Versions were essentially identical except for small changes
in some of the problems.

If you think we made a mistake in grading your exam, describe the mistake in writ-
ing and hand the description with the exam to your lab t.a. or to Mike Clancy. We
will regrade the entire exam.

Solutions and grading standards for versions A and B

Problem 0 (1 point)

You lost 1 point on this problem if you did any of the following:

• you earned some credit on a problem and did not put your name on the page,

• you did not indicate your lab section or t.a. (or gave conflicting information), or

• you failed to put the names of your neighbors on the exam.

The reason for this apparent harshness is that exams can get misplaced or come
unstapled, and we would like to make sure that every page is identifiable. We also
need to know where you will expect to get your exam returned. Finally, we occasion-
ally need to know where students were sitting in the class room while the exam was
being administered.

Problem 1 (4 points)

This problem, based on lab assignments 5 and 6 and project 1, was identical on the
two versions. It asked you to fill in the code for an enumeration of integers in an

Interval

 object. Enumerations you saw in lab had the following components:

• an instance variable that refers to the next item to return;

• a constructor that initializes the instance variable;

• a

hasMoreElements

 method that checks the value of the instance variable to make
sure it refers to a legal element of the collection being enumerated;

• a

nextElement

 method that saves the current item, updates the instance variable,
and then returns the item.

A corresponding instance variable in this problem would be something that indicates
the next value to return from the

Interval

 object. You don’t need a reference, however;
you can store the

int

 value from the interval directly. Here’s the code:

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

2

public IntervalEnumeration () {
nextInt = myLow;

}

public boolean hasMoreElements () {
return nextInt <= myHigh;

}

public Object nextElement () {
if (!hasMoreElements ()) {

throw new NoSuchElementException ("interval ran out");
}
nextInt++;
return new Integer (nextInt - 1);

}

private int nextInt;

Note, incidentally, that

IntervalEnumeration

 is declared inside

Interval

, so its methods
are allowed to access

myLow

 and

myHigh

.

Another approach was to use a

Vector

 or

LinkedList

 object to keep track of the state of
the enumeration. Initially, all the integers in the interval are stored in the vector. If
the vector is nonempty, its first element is the next item to return; this item is then
removed in the

nextElement

 method. Here is code:

public IntervalEnumeration () {
v = new Vector ();
for (int k=myLow; k<=myHigh; k++) {

v.addElement (new Integer (k));
}

}

public boolean hasMoreElements () {
return v.size () > 0;

}

public Object nextElement () {
if (!hasMoreElements ()) {

throw new NoSuchElementException ("interval ran out");
}
Object x = v.elementAt (0);
v.removeElementAt (0);
return x;

}

Vector v;

This approach can be simplified by relying on

Vector

’s own enumeration method:

public IntervalEnumeration () {
v = new Vector ();
for (int k=myLow; k<=myHigh; k++) {

v.addElement (new Integer (k));
}
Enumeration enum = v.elements ();

}

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

3

public boolean hasMoreElements () {
return enum.hasMoreElements ();

}

public Object nextElement () {
return enum.nextElement ();

}

Vector v;
Enumeration enum;

The

Vector

 enumeration will take care of throwing

NoSuchElementException

.

This problem was worth 4 points, and was graded as follows. (Some graders marked
abbreviating codes E1, …, E11 to indicate errors; the codes are listed below with the
errors they abbreviate.)

• 1 point was deducted for a minor logic error. Such errors included off-by-one pro-
cessing (E1), failing to throw an exception where necessary (E2), returning an

int

rather than an

Integer

 object (E4), returning prematurely (E5), use of 0 for a sen-
tinel value (E6), assigning an

int

 to an

Integer

 (E7), casting an

int

 to an

Integer

(E8), and failing to initialize an array or vector (E9).

• 2 points were deducted for changing the state of the

Interval

 object during the
enumeration (E3).

• Solutions with more serious errors received 0,

1

⁄

2

, or 1 point depending on how
much understanding they displayed of the various components of the enumera-
tion. (Some of these were labeled E11.) A prominent example, worth 1 out of 4,
was the apparent confusion of

implements

 with

extends

; some students seemed to
assume that they could just use the methods of the

Enumeration

 “superclass”.

Problem 2 (5 points)

This problem, based on lab assignment 6, was also identical on the two versions. It
asked for code to exchange the first two elements of a linked list. Here is a solution:

private void exchangeFirstTwoNodes () {
if (myFirst.myNext == null) {

throw new NoSuchElementException ("list not long enough");
}
ListNode second = myFirst.myNext;
myFirst.next = second.myNext;
second.myNext = myFirst;
myFirst = second;

}

Some students created new

ListNode

s to do the exchange, for example as follows:

ListNode new2 = new ListNode (myFirst.myItem, myFirst.myNext.myNext);
ListNode new1 = new ListNode (myFirst.myNext.myItem, new2);
myFirst = new1;

You were warned not to assign into a

myItem

 variable, and technically the

ListNode

constructor does such an assignment. However, we decided to allow this solution
because it didn’t involve a

direct

 assignment to a

myItem

 variable.

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

4

Grading (out of 5 points) was as follows. You lost all 5 points for any assignment to a

myItem

 variable, as promised in the problem statement. In other solutions, 2 points
were awarded for throwing an exception correctly for a 1-element list, and 3 points
were earned for correctly modifying the three reference variables (

myFirst

,

myFirst.myNext

, and

myFirst.myNext.myNext

). Returning rather than throwing an
exception lost you both exception points; you lost 1 point for a minor error in throw-
ing the exception, for example, missing

new

, wrong condition, or missing parentheses
in the call to the exception constructor. You lost 1 point for each missing reference
update, 1 point for each minor error (e.g. wrong instance variable names, private
local variables, etc.

Errors in linking were common: losing nodes, creating cycles, etc.. You needed to use
at least one temporary variable in a correct solution.

A common error was to assume that the list had a size variable or method; this lost 1
point. Other students assumed that the list contained a sentinel node; nothing in the
problem specifies this, however. (This error may have resulted in a solution that was
substantially different from what we expected, and thus was misevaluated. If the
assumption of a sentinel was the

only

 error you made on this problem, you should
receive 4 out of 5 points.) Another common error was to omit necessary references to

myFirst

, for example by using

myNext

 consistently to mean

myFirst.myNext

. Many
students also seemed not to realize that

List

 and

ListNode

 are two separate classes.

Problem 3 (4 points)

This problem involved analyzing code similar to that in lab assignment 7. Note that

BetterInterval.equals

 does not override

Object.equals

 because of the different param-
eter type, so

BetterInterval.equals

 will only be called when the compiler can deter-
mine that two

BetterInterval

 objects are involved in the comparison. Version A’s
answers were the following:

In version B, the first two sets of statements were switched and the last two sets of
statements were switched from corresponding code in version A. Thus the version B
answers are

false

,

true

,

true

,

false

.

1 point was awarded per correct answer. No partial credit was awarded.

expression result + explanation

b = intvl1.equals (intvl2);

true

; since both

intvl1

 and

intvl2

 are declared as

BetterInterval

s,

BetterInterval.equals

 is used.

b = v1.equals (v2);

false

;

Vector

 comparisons use

Object.equals

 to
compare vector elements unless

Object.equals

 is
overridden.

b = intvl3.equals (intvl4);

false

; the apparent type of

intvl4

 is

Object

, so the
only match is Object.equals.

b = ((BetterInterval) intvl3).equals
((BetterInterval) intvl4);

true; the apparent type of the recast intvl3 and
intvl4 is BetterInterval, so BetterInterval.equals is
used.

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

5

Problem 4 (7 points)

Version A was identical to version B except that the order of the columns were
reversed for all the choices. Here are solutions. Recall that Θ(1) means constant
time.

Sorted doubly linked list implementation:

Vector implementation:

The answer to part c, identifying the total running time of the add method in the Vec-
tor implementation, is Θ(n). This is Θ(log n) for finding k’s position + Θ(n) for insert-
ing k. Θ(log n) is dominated by Θ(n), and thus disappears from the Θ estimate.

operation running time + explanation

finding k or k’s proper position in the
list (for insertion)

Θ(n); linear search is necessary

then inserting k into the list if it’s not
already there

Θ(1); doubly linked lists allow in-place insertion or
deletion

then updating the median if
necessary

Θ(1); there are four cases, depending on whether there are
an odd or even number of values in the list and on
whether k was inserted before or after the median

locating the median (for deletion) Θ(1); one of the instance variables is keeping track of the
median

then removing it from the linked list, Θ(1); doubly linked lists allow in-place insertion or
deletion

then updating the median if
necessary

Θ(1); the median moves to what was either its left or right
neighbor depending on the number of values in the list

operation running time + explanation

finding k or k’s proper position in the
vector (for insertion)

Θ(log n); binary search is used

then inserting k into the vector if it’s
not already there

Θ(n); insertion at the start of the vector requires shifting
all the subsequent elements one position

then updating the median if
necessary

Θ(1); the median is always the element at position
(myElements.size()–1)/2, and Vector.insertElementAt has
already incremented the size in the preceding step

locating the median (for deletion) Θ(1); the median is at position (myElements.size()–1)/2

then removing it from the vector, Θ(n); subsequent elements must be shifted back

then updating the median if
necessary

Θ(1); Vector.removeElementAt decrements the size, from
which the position of the median may immediately be
computed

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 2
Spring 2001

6

In parts a and b, 1⁄2 point was awarded per correct answer; part c was worth 1 point.
There was no partial credit. You were allowed in the Vector implementation to say
“none” or “not necessary” instead of circling Θ(1).

Some other notes: The three steps of the each high-level operation are not completely
independent. (That was the purpose of our saying “then removing ...”, “then inserting
...”, and so on.) It is likely, in fact, that the code for these steps would all be in a single
method and could thus share local variables. Also, though you were not allowed to
assume any extra instance variables, nothing ruled out the use of local temporary
variables (in order to implement the operation “as fast as possible” as directed in the
problem statement). An example would be in deleting and updating the median:

// after checking that median.myNext and median.myPrev were nonnull
ListNode prev = median.myPrev;
ListNode next = median.myNext;
prev.myNext = next;
next.myPrev = prev;
mySize--;
myMedian = mySize%2? prev: next;

Problem 5 (4 points)

This problem was identical on both versions. A repOk method would need to check
several properties beyond those given:

• mySize is the number of nodes in the list;

• the myItem variable in each node contains a nonnull object;

• the myItem variable in each node contains an Integer object;

• the nodes are arranged in order of their myItem values;

• myMedian contains a reference to the middle node in the list.

You received 1 point for each nontrivial property that couldn’t be inferred from oth-
ers you gave or from those we gave you. Almost all 4-point answers listed some prop-
erty about mySize, something about the contents of myItem, something relating
adjacent nodes, and something about myMedian. We evaluated breadth more than
depth; thus you received a point for saying that myMedian referred to some node in
the list, or for saying that mySize > 0 if you did not also say that mySize is the num-
ber of nodes in the list. Two closely related properties—for example, (a) each myItem
value is less than or equal to that of its successor node, and (b) there are no duplicate
values in the list—received only 1 point. (However, you got credit both for saying
that all myItem values were nonnull and that they contained Integer objects.)

We think that almost any property involving only myPrev and myNext variables can
be derived from the given information.

A few small errors lost 1⁄2 point: a comparison that would crash with a one-element
list, and a comparison of pointers (e.g. myMedian < myMedian.myNext).

