

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

1

Exam information

369 students took the exam. Scores ranged from 1 to 20, with a median of 11 and an
average of 11.1. There were 40 scores between 15.5 and 20, 180 between 10.5 and 15,
132 between 5.5 and 10, and 17 between 2 and 5. (Were you to receive a grade of 16
on all your midterm exams, 48 on the final exam, plus good grades on homework and
lab, you would receive an A–; similarly, a test grade of 11 may be projected to a B–.)

There were four versions of the exam, A, B, C, and D. (The version indicator appears
at the bottom of the first page.) Versions A and C were identical except for the
(reversed) order of the problems. Versions B and D were also identical except for the
order of the problems.

If you think we made a mistake in grading your exam, describe the mistake in writ-
ing and hand the description with the exam to your lab t.a. or to Mike Clancy. We
will regrade the entire exam.

Solutions and grading standards for versions A and B

Problem 0 (1 point)

You lost 1 point on this problem if you did any of the following:

• you earned some credit on a problem and did not put your name on the page,

• you did not indicate your lab section or t.a., or

• you failed to put the names of your neighbors on the exam.

The reason for this apparent harshness is that exams can get misplaced or come
unstapled, and we would like to make sure that every page is identifiable. We also
need to know where you will expect to get your exam returned. Finally, we occasion-
ally need to know where students were sitting in the class room while the exam was
being administered.

Problem 1 (2 points)

This was problem 4 on versions C and D. Version A asked for a statement that would
initialize the

joeAcct

 variable as shown in the diagram. Here are solutions:

Account joeAcct = new Account (100, new Account (500));
Account joeAcct = new Account (100, new Account (500, null));

Version B asked for essentially the same thing, except initializing

maryAcct

 with dif-
ferent balances:

Account maryAcct = new Account (300, new Account (700));
Account maryAcct = new Account (300, new Account (700, null));

1

⁄

2

 point was deducted for not declaring the variable, that is, omitting the first

Account

 on the line, or for forgetting either

new

. 1 point was deducted for a correct
two-statement solution; a two-statement solution with some other small error
received

1

⁄

2

 point out of 2. 1 point was also deducted or a solution with an incorrect
attempt to initialize a new overdraft account, for example

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

2

Account maryAcct =
new Account (300, Account parentAcct=new Account(700));

No credit was given for any solutions that did not explicitly initialize the overdraft
account. For example,

Account maryAcct = new Account (300, myParent);

earned 0 out of 2.

Problem 2 (8 points)

This was problem 3 on versions C and D.

Part a, worth 2 points, involved identifying errors in a main program that tested the

IslamicDate

 class. Answers are shown below.

public static void main (String [] args) {

IslamicDate d1 = IslamicDate (1, 1);

error (

new

omitted;
corrected by inserting

new)

IslamicDate d2 = d1.makeTomorrow ();

error (a call to a

 void

method
is used where an

 IslamicDate

expression is required)

IslamicDate d3 = null; OK

System.out.println ("" + d1); OK

System.out.println (d3.tomorrow ());

error

(d3

is

 null)

}

In version B, the fourth statement was moved to precede the assignment to

d2

; thus
the answers were

error

,

OK

,

error

,

OK

,

error

.

1

⁄

2

 point was deducted for each error, up to
a maximum of 2.

In part b, worth 6 points, you were to write a method

precedes

 (version A) or

isLater-
Than

 (version B) that could be used outside the

IslamicDate

 class to compare two
dates in the same year. (We explain only the

precedes

 method here.

isLaterThan

 is
the same, except with appropriate comparisons reversed.) There are a variety of
solution approaches, most resembling the

daySpan

 computations of homework 2;
examples appear below.

An iterative solution:

public static boolean precedes (IslamicDate d1, IslamicDate d2) {
if (d1.equals (d2)) {

return false;
}
IslamicDate d3;
for (d3=d1.tomorrow ();

 !d3.equals (d2) && !d3.equals (new IslamicDate (12,29));
 d3.makeTomorrow ()) {

}
return d3.equals (d2);

}

A

while

 loop or a rearranged

for

 loop would also have been appropriate.

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

3

A recursive solution:

public static boolean precedes (IslamicDate d1, IslamicDate d2) {
if (d1.equals (d2))

return false;
} else {

return helper (d1, d2)
}

}

public static boolean helper (IslamicDate d1, IslamicDate d2) {
if (d1.equals (d2)) {

return true;
} else if (d1.equals (new IslamicDate (12,29))) {

return false;
} else {

return helper (d1.tomorrow (), d2);
}

}

A helper function or special case was needed to distinguish between two initially
equal dates (for which

false

 is returned) from dates found to be equal in the recursion
base case (for which

true

 is returned).

An alternative approach that could be implemented in either an iterative or a recur-
sive method is to call

.tomorrow ()

on both dates, then to “race” them forward using

.makeTomorrow ()

. This approach determines which date is later by seeing which
one first reaches the date

1/1

. A variation on this approach is to start two dates at

1/1

, then count the number of calls to

.makeTomorrow ()

 necessary to reach the
argument dates.

A significantly different approach uses

toString

 to access the month and day of each
date:

public static boolean precedes (IslamicDate d1, IslamicDate d2) {
String s1 = d1.toString ();
String s2 = d2.toString ();
int month1 = Integer.parseInt (s1.substring (0,s1.indexOf("/")));
int day1 = Integer.parseInt (s1.substring (s1.indexOf("/")+1));
int month2 = Integer.parseInt (s2.substring (0,s2.indexOf("/")));
int day2 = Integer.parseInt (s2.substring (s2.indexOf("/")+1));
return month1 < month2 || (month1 == month2 && day1 < day2);

}

Note that

precedes

 is defined

outside

 the

IslamicDate

 class, so the private variables
within

IslamicDate

 are inaccessible. If the month and day components of each date
are known, the computation is easy; thus access to the private

IslamicDate

 variables
significantly simplifies the problem. We deducted 4 points for this error, which was

very

 common. (An exception was a solution that used the private variables in the
context of a loop or recursion structured as described above. This earned only a 2-
point deduction.)

A similar error, also earning a 4-point deduction, was to use one of the

daySpan

 meth-
ods, which do not appear in the abbreviated

IslamicDate

 class.

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

4

Since the

precedes

 method is to be called from

DateTester.main

 without any

DateTester

 object having been initialized, it must be declared as

static

. 1 point was
deducted for omitting the

static

 modifier, or for any other error in the method header.
(Omitting the

IslamicDate

 declarations from the parameter list, i.e. saying

public static boolean precedes (d1, d2)

was a somewhat less common way to lose this point.) We did not deduct any points
for declaring the method as private rather than public.

There were numerous opportunities for logic errors. An off-by-one error generally
lost 1 point. Off-by-one errors included both errors in data comparisons and errors in

String

 processing for those who used the

toString

 approach. It also included solutions
that returned true if the dates were equal. Most other minor logic errors, e.g. using
an incorrect comparison operator or nesting

if

s incorrectly, also lost 1 point.

A more serious logic error was to somehow compute the number of days between the
two dates, without checking whether one has wrapped around past the end of the
year when computing this difference. This often involved a comparison with the total
number of days in a year, but with no comparison to the first or last day of the year.
This earned a 2-point deduction. Even more serious was to handle only consecutive
dates, for example by calling

d1.tomorrow ()

 and comparing the resulting date to

d2

without a loop or recursion. This error lost 5 points.

Other errors, all worth a 1-point deduction, included the following:
• Side effects, i.e., calling

makeTomorrow

 on one of the input objects. (A subtle case
was modifying a temporary date variable that was sharing one of the input
objects.) The specification says that nothing should be modified.

• Use of = instead of == or use of .equals on int (primitives).
• Returning “true” or “false” strings rather than the boolean values true or false.
• Various syntax errors such as using Scheme syntax or omitting braces.

Problem 3 (5 points)

This problem involved analyzing code similar to that from lab assignment 3. It was
problem 2 on versions C and D. Version A’s method was

public boolean contains1MoreThan (String s) {
if (myString.length()==0) {

return false;
} else if (s.length()==0) {

return true;
} else {

StringToCheck5 remainder
= new StringToCheck5 (myString.substring(1));

if (myString.charAt(0) == s.charAt(0)) {
return remainder.contains1MoreThan (s.substring(1));

} else {
return remainder.contains1MoreThan (s);

}
}

}

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

5

Version B’s code was the same, except that the order of the first two comparisons was
switched:

if (s.length()==0) {
return true;

} else if (myString.length()==0) {
return false;

} else { ...

Part a, worth 2 points, was to determine if the method would crash. You earned 1
point for the answer and the other for the explanation. The answer we expected was
“no”, since the length comparisons guarded the subsequent uses of charAt and sub-
string. Since grading the exam, however, we noticed that the method precondition did
not rule out a value of null for myString. We will award 1 or 2 points for the answer
“yes”, provided that your explanation mentions the possibility of myString containing
null. (Whether you get 1 or 2 points depends on the rest of your answer for that part.)

A common error on part a was to claim that a crash would result from myString or s
containing exactly one character. Note, however, that charAt(0) is the String equiva-
lent of Scheme’s car function; similarly, the String equivalent of cdr is substring(1).
Applying substring(1) to a one-character string gives the empty string and produces
no error. (StringToCheck2.contains1MoreThan from lab assignment 3 involves the
same operations, and doesn’t crash.) The erroneous claim may have resulted from
confusing the empty string with a null String reference.

Questions for part b differed in the two versions. On version A, you were to describe
all pairs of Strings myString and s for which contains1MoreThan should return true
but doesn’t. On version B, we wanted just the opposite: a description of all pairs of
Strings myString and s for which contains1MoreThan should return false but doesn’t.
Here’s the analysis a correct answer might have involved.

• Examining the base cases, we see that version A’s method returns false given any
empty string myString. If myString is initially empty, that’s the correct result,
since an empty string can’t possibly be the result of inserting a single character
into anything. We thus must examine the recursive cases to see if somehow
myString can run out at the same time as or before s. There are two possibilities:
either the first characters match, so the remainders of the two strings are com-
pared, or they don’t match, so the rest of myString is compared to s. If both
remainders are compared, myString’s length relative to s’s stays the same. Thus
we consider the simplest alternative, namely the case where myString shrinks but
s doesn’t, yet myString is still the result of inserting a single character into s. This
happens for the strings “ab” and “b”. More generally, it happens for any myString
that results from adding a single character in a position other than the end of s.
Here are some examples:

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

6

• In version B, we similarly note that contains1MoreThan returns true if s is empty,
regardless of the length of myString. Thus when myString contains zero or more
than one character, the returned value is incorrect. Now we examine the recur-
sive cases to see how this base case might be reached. There are two possibilities:
either the first characters match, so the remainders of the two strings are com-
pared, or they don’t match, so the rest of myString is compared to s. More gener-
ally, the length of s decreases each time a matching pair of characters in the two
strings is detected. Thus whenever every character in s has a matching character
in myString—that is, all the characters in s occur in myString, in the same
sequence—contains1MoreThan will return true. The return value is incorrect
when either myString and s are identical or when myString is the result of insert-
ing two or more characters into s. Here are some examples:

Part b, worth 3 points, was graded as follows. You earned 1 point for a correct exam-
ple, provided that you also didn’t provide any incorrect examples. You earned 2
points for specifying an infinite set of strings that was a subset of the correct set; an
example 2-point answer, in version B, was to say that only equal strings cause false
positives. In version A, saying all pairs myString and s where myString is the result of
appending a character to s—exactly the opposite of what we intended—earned 1
point out of 3.

myString s explanation

xabc abc returns false, should return true

axbc abc returns false, should return true

abxc abc returns false, should return true

abcx abc returns true, correctly

abcc abc returns true, correctly

myString s explanation

xyabc abc returns true, should return false

axbyc abc returns true, should return false

abcxy abc returns true, should return false

abc abc returns true, should return false

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

7

Problem 4 (4 points)

This problem was based on lab assignment 4. Version A was identical to version B
except that the parts were reversed. It was problem 1 on versions C and D.

Here is an Account constructor that throws IllegalArgumentException if its argument
is negative. (The assumption is that it would replace the 1-argument constructor cur-
rently provided in the class.)

public Account (int balance) {
if (balance < 0) {

throw new IllegalArgumentException ("Balance < 0:" + balance);
}
myBalance = balance;
myParent = null;

}

IllegalArgumentException is an “unchecked” exception, so you don’t need throws Ille-
galArgumentException in the header; it doesn’t hurt to include it, though. The assign-
ment statements may come either before or after the balance test. You don’t need the
assignment to myParent since it would be set to null by default.

1 point was deducted from the constructor solution for each of the following errors;
both were missing some important part of the exception throw.

• missing new;

• missing argument to the IllegalArgumentException constructor.

Bad logic (usually throwing the exception for a positive balance) also received a 1-
point deduction. Solutions that had all the necessary parts received a 1⁄2-point deduc-
tion for incorrectly specified parts, for example:

• throwing the wrong type of exception;

• saying “throw” for “throws” or vice-versa (on some exams, 1 point was mistakenly
deducted for this error);

• adding throws IllegalArgumentException before the method argument list rather
than after.

The other part of this problem involved testing a version of the 1-argument construc-
tor written by someone else: “initialize an Account with a negative balance and then
print a suitable message about what happened”. A full-credit solution printed some
message regardless of whether or not the constructor threw the exception. Here’s a
solution.

public static void main (String [] args) {
try

Account test = new Account (-3);
System.out.println (“Account initialized with negative balance!”);

} catch (Exception e) {
System.out.println ("Exception correctly thrown "

+ "for account with negative balance.")
}

}

CS 61B (Clancy, Yelick) Solutions and grading standards for exam 1
Spring 2001

8

A frequent error was the failure to include a call to println immediately after the con-
structor call, to print an error message if the constructor did not throw an exception.
This lost 1 point. (This error occurred so often that some graders resorted to short-
hand: “DPSM” means “Didn’t Print Suitable Message”.) Other 1-point errors were
access of Account private variables—the main program may be in a “Tester” class
rather than in the Account class—and method calls with incorrect syntax, e.g. using
acct.balance instead of acct.balance ().

